InsightInsight
IPIC-Ribbon-Horizontal-2-Small
  • About
    • What We Do
    • Governance
    • Equality, Diversity and Inclusion
  • People
    • Work With Us
    • Senior Leadership
    • Principal Investigators
    • Funded Investigators
    • Research and Operations
  • Research
    • Central Bank PhD Programme
    • Excellence
    • Funding Collaboration
    • MSCA Postdoctoral Fellowships
    • National Projects
    • European Projects
  • Industry
    • Collaborate
    • Insight Brochure
    • Commercialisation
    • Contact
  • Public Engagement
    • Meet the Team
    • Highlights
    • Insight Scholarship
  • News
    • Spotlight on Research
    • Events
    • Newsletter
    • Press Releases
  • Contact
  • About
    • What We Do
    • Governance
    • Equality, Diversity and Inclusion
  • People
    • Work With Us
    • Senior Leadership
    • Principal Investigators
    • Funded Investigators
    • Research and Operations
  • Research
    • Central Bank PhD Programme
    • Excellence
    • Funding Collaboration
    • MSCA Postdoctoral Fellowships
    • National Projects
    • European Projects
  • Industry
    • Collaborate
    • Insight Brochure
    • Commercialisation
    • Contact
  • Public Engagement
    • Meet the Team
    • Highlights
    • Insight Scholarship
  • News
    • Spotlight on Research
    • Events
    • Newsletter
    • Press Releases
  • Contact

Adapting Term Recognition to an Under-Resourced Language: the Case of Irish

Insight>Publications>Adapting Term Recognition to an Under-Resourced Language: the Case of Irish

Authors:

John McCrae, Adrian Doyle

Publication Type:

Refereed Conference Meeting Proceeding

Abstract:

Automatic Term Recognition (ATR) is an important method for the summarization and analysis of large corpora, and normally requires a significant amount of linguistic input, in particular the use of part-of-speech taggers. For an under-resourced language such as Irish, the resources necessary for this may be scarce or entirely absent. We evaluate two methods for the automatic extraction of terms, based on the small part-of-speech-tagged corpora that are available for Irish and on a large terminology list, and show that both methods can produce viable term extractors. We evaluate this with a newly constructed corpus that is the first available corpus for term extraction in Irish. Our results shine some light on the challenge of adapting natural language processing systems to under-resourced scenarios.

Conference Name:

Celtic Language Technology Workshop 2019

Digital Object Identifer (DOI):

10.18653/v1/w19-6907

Publication Date:

19/08/2019

Conference Location:

Ireland

Research Group:

Linked Data

Institution:

National University of Ireland, Galway (NUIG)

Open access repository:

Yes

Publication document:

mccrae2019adapting.pdf

Insight_host_partners_funder
Ireland's European Structural and Investment Funds Programme 2014-2022 logo
European Union European Regional Development Fund logo
  • Privacy Statement
  • Copyright Statement
  • Data Protection Notice
  • Accessibility Statement