InsightInsight
sfi
  • About
    • Who we are
    • What we do
    • Our structure
  • People
    • Work With Us
    • Senior leadership
    • Principal Investigators
    • Funded Investigators
    • Research and Operations
  • Research
    • Application Domains
    • Demonstrators
    • Research Challenges
    • Core Scientific Expertise
    • Publications
    • Projects
    • European Funded Projects
  • Business
    • Masterclasses
    • Business Team
  • Public Engagement
    • EPE Committee
    • Citizen Science
  • News
    • Latest News
    • Media Queries
    • Newsletter
    • Spotlight on Research
  • Contact
  • About
    • Who we are
    • What we do
    • Our structure
  • People
    • Work With Us
    • Senior leadership
    • Principal Investigators
    • Funded Investigators
    • Research and Operations
  • Research
    • Application Domains
    • Demonstrators
    • Research Challenges
    • Core Scientific Expertise
    • Publications
    • Projects
    • European Funded Projects
  • Business
    • Masterclasses
    • Business Team
  • Public Engagement
    • EPE Committee
    • Citizen Science
  • News
    • Latest News
    • Media Queries
    • Newsletter
    • Spotlight on Research
  • Contact

Machine Learning & Statistics

Insight>Publications

Authors:

Tieu-Khanh Luong, Van-Tinh Nguyen, Anh-Thai Nguyen, Emanuel Popovici

Publication Type:

Refereed Conference Meeting Proceeding

Abstract:

Stochastic computing (SC) has emerged as a potential alternative to binary computing for a number of low-power embedded systems, DSP, neural networks and communications applications. In this paper, a new method, associated architectures and implementations of complex arithmetic functions, such as exponential, sigmoid and hyperbolic tangent functions are presented. Our approach is based on a combination of piecewise linear (PWL) approximation as well as a polynomial interpolation based (Lagrange interpolation) methods. The proposed method aims at reducing the number of binary to stochastic converters. This is the most power sensitive module in an SC system. The hardware implementation for each complex arithmetic function is then derived using the 65nm CMOS technology node. In terms of accuracy, the proposed approach outperforms other well-known methods by 2 times on average. The power consumption of the implementations based on our method is decreased on average by 40 % comparing to other previous solutions. Additionally, the hardware complexity of our proposed method is also improved (40 % on average) while the critical path of the proposed method is slightly increased by 2.5% on average when comparing to other methods.

Conference Name:

2019 IEEE 30th International Conference on Application-specific Systems, Architectures and Processors (ASAP)

Digital Object Identifer (DOI):

10.1109/ASAP.2019.00018

Publication Date:

15/07/2019

Pages:

281-287

Conference Location:

United States of America

Research Group:

Optimisation & Decision Analytics

Institution:

National University of Ireland, Cork (UCC)

Open access repository:

No

footer-top
  • Privacy Statement
  • Copyright Statement
  • Data Protection Notice
This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Privacy and Cookies Notice ACCEPT
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

Non-necessary

Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.