
Received May 16, 2019, accepted July 3, 2019, date of publication July 22, 2019, date of current version August 9, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2930416

QPPDs: Querying Property Paths Over
Distributed RDF Datasets
QAISER MEHMOOD 1, MUHAMMAD SALEEM2, RATNESH SAHAY 1,
AXEL-CYRILLE NGONGA NGOMO3, AND MATHIEU D’AQUIN1
1Insight Centre for Data Analytics, Data Science Institute, NUI Galway, Galway, Ireland
2Leipzig University, Leipzig, Germany
3Department of Computer Science, University of Paderborn (UPD), Paderborn, Germany

Corresponding author: Qaiser Mehmood (qaiser.mehmood@insight-centre.org)

This work was supported in part by the Science Foundation Ireland (SFI) under Grant SFI/12/RC/2289, in part by the European Regional
Development Fund, and in part by the Project HOBBIT, Germany, under Grant 688227.

ABSTRACT A key property of linked data, i.e., the web-based representation and publication of data
as interconnected labeled graphs, is that it enables querying and navigating through datasets distributed
across the network. SPARQL1.1, the current standard query language for RDF-based linked data, defines a
construct—called property paths (PP)—to navigate between the entities of a graph. This is potentially very
useful in a number of use cases, e.g., in the biomedical domain, where large datasets are available as linked
data graphs. However, the use of PP in SPARQL 1.1. is possible only on a single local graph, requiring us
to merge all distributed datasets into one large, centrally stored graph, therefore reducing the value of using
linked data in the first place. We propose an index-based approach—called QPPDs—for answering queries
for paths distributed across multiple, distributed datasets. We provide a heuristic-based source selection
mechanism to select the relevant datasets (also called data sources) for a given path query, and a technique that
federates queries to selected sources, and assembles (merges) the paths (i.e., partial or complete) retrieved
from those remote datasets. We demonstrate our approach on a genomics use-case, where the description of
biological entities (e.g., genes, diseases, and drugs) is scattered across multiple datasets. In our preliminary
investigation, we evaluate the QPPDs approach with real-world path queries—on biological data that are
very heterogeneous in nature—in terms of performance (overall path retrieval time) and result completeness,
i.e., the number of paths retrieved.

INDEX TERMS Linked data, SPARQL, distributed querying, federated querying, path retrieval, graph
traversal.

I. INTRODUCTION
The potential benefits of using Linked Data (also known
as the Web of Data or Semantic Web data), have been
increasingly considered in a variety of domains where rich,
multi-source data need to be explored, e.g., bioinformatics,
geography, literature, etc. In those domains, several, often
large datasets have been made available using RDF to repre-
sent them as labelled directed graphs on the Web. Support for
querying and exploring those datasets has also been evolving.
SPARQL is, for example, the standard query language for
RDF graph data, and the recent SPARQL 1.1. specifica-
tion introduced new navigational features (see example in
Listing 1), where users can check the existence of paths
between two entities (i.e., nodes).

The associate editor coordinating the review of this manuscript and
approving it for publication was Bora Onat.

Listing 1. Property Path query in SPARQL1.1.

There are however a number of limitations in those speci-
fications, and their implementation in various reference plat-
forms. For instance, the above query can only be used to
check the existence of paths, however, it will not enumerate
paths. To overcome this limitation, in our previous work [1],
we proposed an extension of SPARQL which allows finding,
rendering and enumerating the top-k shortest paths. Due to its
importance as a feature in a number of use cases, including

VOLUME 7, 2019
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

101031

https://orcid.org/0000-0002-1380-1750
https://orcid.org/0000-0003-4864-4174

Q. Mehmood et al.: QPPDs

in the biomedical domain, other earlier approaches [2]–[5]
also tried to address the issue of querying paths. In 2016,
the European Semantic Web Conference (ESWC) hosted a
challenge1 to find the ‘‘Top-K Shortest Paths in Large Typed
RDF Graphs’’. Recently, the Stardog tool2 also started sup-
porting path retrieval via SPARQL querying. However, all the
previous approaches are only able to work on a single graph.
None of them were aimed at finding paths that span across
several distributed graphs, which seems an obvious require-
ment to enable the full benefit of the use of Linked Data.
Indeed, in the biomedical domain for example, a lot of data
is available publicly from multiple, heterogeneous sources.
In such a case, it is very common for two biological entities
(e.g., gene, protein, drug, pathway, etc.) to be related through
paths formed of links going across several of those datasets.
To query such paths neither SPARQL 1.1, even if it supports
some form of federated querying, nor the aforementioned
techniques would be effective.

Hence, to find paths between two entities, the centralized
approaches adopted by current systems pose some challenges
such as: (i) querying multiple datasets requires the user to
first merge them into a single graph, which is a cumbersome
task; (ii) copied data need to be synchronized; and therefore
(iii) merged data might not be as up-to-date and fresh as in the
original source; (iv) data is not always under control or fully
accessible by the person querying it, and finally (v) scalabil-
ity is a major issue in the centralized approaches. We pro-
pose an approach called QPPDs that can efficiently federate
path queries and return a list of paths that connect entities
(i.e., a source entity and a target entity) across distributed,
interconnected graphs. The QPPDs adopts an index-based,
top-down approach and federates navigational queries across
multiple datasets which are hosted as SPARQL endpoints.
To find distributed paths between given source and target
resources, the QPPDs approach works in four steps: (i) first
it selects all datasets which contain the source and target
resources; (ii) in the second step it retrieves all paths from
each source dataset to each target dataset; (iii) in the third
step it retrieves all distributed paths from the source resource
to the target resource; (iv) in the final step it merges the paths.

The rest of the paper is organized as follow: We start by
presenting two motivating scenarios (i.e., a running example,
and a real-world use case) that relate to retrieving paths
between source and target nodes of a query, hosted in dif-
ferent triple stores. We then introduce preliminary notions
and notations and discuss related work on traversing and
retrieving paths in relational and graph databases. We show
the details of the QPPDs approach and provide an evaluation
of its performance and completeness, discussing the insight
obtained from the results. Finally, we present our conclusions
and various routes to optimize the navigation across federated
RDF graphs.

1http://2016.eswc-conferences.org/top-k-shortest-path-large-typed-rdf-
graphs-challenge.html

2https://www.stardog.com/docs/#_path_queries

II. MOTIVATING SCENARIO
In this section, we present two motivating scenarios: (1) a
real-world scenario showing the use of distributed property
paths in RDF datasets for Cancer Genomics; and (2) a toy
scenario which is used as a running example to explain the
proposed approach.

A. CANCER GENOMICS
In the bio-informatics domain, for a practitioner to understand
cancer progression, several genetic features (e.g. diseases,
medical history, etc.) are often studied together. Therefore,
one of the key challenges in cancer genomics –a cornerstone
of precision medicine– is to discover gene-disease-drug asso-
ciations, i.e. understanding which gene is effected by what
disease and how this disease can be treated with what drug.
At data level, such associations provide insight into the drug
development process –tailored specifically for an individual
patient (or a group of patients)– targeting prevention, diagno-
sis and treatment of the diseases [6].

For instance, consider a scenario where a biomedical
expert is trying to discover the paths between a gene
rs769022521 and the associated disease HP_0000024,
and (s)he only has access to a single local dataset (e.g., Vari-
ant, see Figure 1). Even if those two entities are present in that
dataset, existing paths between them might not be, in which
case, the expert would not be able to find the association
between rs769022521 and HP_0000024, unless (s)he
does have access and knowledge about other datasets. Even
if that was the case, however, without an approach to identify
paths across those datasets, the expert would have a hard time
finding paths without first integrating all datasets into one.

Figure 1 shows how a path between rs769022521 and
HP_0000024 can be obtained where each of the dataset
i.e., (Variant, Gene, Protein, PantherClass, Phenotype, and
Disease) hosted at different SPARQL endpoints contributes
to this particular path.

Based on the above scenario we believe that a technology
–implemented here through the QPPDs approach– that can
enable querying paths/associations among two or more bio-
logical entities across distributed datasets/endpoints would be
of great help to biologist and practitioners working in cancer
genomics as well as in the larger healthcare and life sciences
area. This is further demonstrated in the evaluation section of
this paper.

B. RUNNING EXAMPLE
In this scenario, we present a toy/fictional example, used
in the rest of the paper to illustrate the approach. It uses
three synthetic RDF datasets given in Figure 2. The goal of
presenting this use case is to explain the proposed approach
by using a simple and easy to follow example. Suppose that
we want to find all the paths from resource F of DatasetD1 to
resource E which is present in datasetD2. A simple SPARQL
property path query on each dataset individually will not be
able to retrieve any path. This is because both source F and

101032 VOLUME 7, 2019

Q. Mehmood et al.: QPPDs

FIGURE 1. A real-world example of distributed paths between RDF datasets.

FIGURE 2. Running example: Datasets and paths between node F and node E.

target E nodes are not present within the same dataset in any
of the datasets. However, we can obtain partial paths from
different datasets which can later be assembled or re-arranged
to form complete paths between the two distributed resources
as given in Figure 2b.

III. PRELIMINARIES
Consider a network of distributed datasets G where each
datasetG = (V ,P) is a directed graph. V is the set of vertices
and P is the set of edges. The vertices (vi, vj) are associated
through a set of edges E = {ein, . . . , en′j}. If there exists an
edge eij = (vi, vj) then vj is a successor of vi and vi is a
predecessor of vj. For RDF graphs, we define these notations
as follows:
Definition 1 (Path): A Path within a graph G = (V ,P)

is a sequence of nodes and relations n1
t1
−→ n2

t2
−→,

tk−1
−−→ nk such that, there exists a property (edge) e of
type tk−1 between two consecutive nodes in a sequence
nk−1,nk .

In a distributed environment, if a path between source and
target entities does not exist within a local dataset then remote
datasets are scanned and queried to find the paths connecting
those entities across graphs.
Definition 2 (RDF Triple & Graph): The set of RDF ter-

minologies consists of the set of IRIs I , the set of blank-nodes
B and the set of literals L. An RDF Triple T := (s; p; o) is an
element of the set G := (I∪B) × I × (I∪L∪B). The set G
is a finite set of triples called RDF graph. An RDF graph Gi
of a single triple Ti is represented by an edge or property pi
through which a vertex (subject) si is associated with another
vertex (object) oi.
Definition 3 (Relevant Path Sources): Given a path query

Q (see Listing 6) corresponding to finding a path between
a subject si and object oi where the set of relevant sources
for T in G is the set DT ⊆ G of data sources that
can provide (partial) paths when queried with T . We use
the notation DT to denote the set of relevant data sources
for source (subject) and target (object) nodes and use D

VOLUME 7, 2019 101033

Q. Mehmood et al.: QPPDs

when the context does not require specifying the query
patterns.
Definition 4 (Path Reachability): For a labeled directed

RDF graphG, the reachability relation is the transitive closure
of RDF properties p(s,o) such that i.e., for the set of all
ordered pairs (s, o) there exists a sequence of subjects and
objects v0 = s, v1, v2, . . . , vk = o where the property
p(vi−1, vi) is in p(s,o) for all 1 ≤ i ≤ k .
For a given query Q to find the path between si and oi,

if these two are connected through any number of paths
pi, . . . , pn we say that paths exist and source (si) and target
(oi) are reachable. While if there is no path between si and oi,
it means that (si, oi) are not reachable.

IV. RELATED WORK
As linked data is growing, different query federation
approaches have been introduced to query such distributed
data sources. We categorize the related work based on the
general underlying technology, as well as the relation to
navigational queries and the identification of paths between
entities.

A. DISTRIBUTED DATABASES
Some relational database systems such as [7] provide the
facility to store graph data in distributed relational tables.
In contrast to the graph databases, the relational databases
are not designed to provide public endpoints or access to
the data and therefore most of them are used to process
graph queries within the enterprise context. There are non-
relational distributed systems, e.g., [8], [9], which manage
distributed data via different data structures and support sim-
ple navigational queries (e.g., shortest path, neighborhood,
degree, etc). Distributed graph databases, such as Stardog,3

Neo4j,4 Blazegraph,5 are optimized for graph navigational
features, but those are not implemented for navigation across
the distributed datasets. Trinity6 andHyperGraphDB7 are two
systems that include distributed query based approaches.

B. DISTRIBUTED PATH FINDING ALGORITHMS
Google in 2014, introduced a framework named Pregel [10]
where distributed querying is possible based on message
passing. The basic idea of Pregel was to partition a graph
and distribute it on different servers. It works similarly to
a master-slave approach, where the master assigns tasks to
different slave machines. These slave machines communicate
with each other through message passing.

Comparing Pregel to our approach, we can identify a num-
ber of differences: (i) Pregel does not work like a federated
systems but like master-slave and is file based, i.e. data is
partitioned and distributed in a closely controlled way, while

3hhttps://www.stardog.com/blog/graphql-and-paths/
4https://neo4j.com/developer/kb/all-shortest-paths-between-set-of-

nodes/
5https://wiki.blazegraph.com/wiki/index.php/PropertyPaths
6https://www.microsoft.com/en-us/research/project/trinity/
7http://hypergraphdb.org

the approach we adopted is purely distributed where data can
be served by different providers, exposing different interfaces
supporting path queries, (ii) our system is specific to RDF-
based distributed graphs and SPARQL path queries. Our
system is index-based, meaning that message passing is done
only between already known connected datasets. In [11] they
proposed a distributed system for dynamic road network.

The previous two approaches are based on the shared
algorithms disseminated across the network. Also, to query
the paths, these systems require to have get access to data,
partition it and restructure the data according to their imple-
mentations. However, this cannot be achieved using data from
the linked open data cloud (LOD). Our approach relies on
whatever pathfinding algorithm (e.g., BFS, DFS, A*, Bidi-
rectional) is available in the underlying implementation of
the triple stores behind a dataset’s endpoint. Our approach
therefore gets results from the endpoint’s underlying algo-
rithms, merges these and presents the complete results to
users. Finally, neither of the two systems described above
support the SPARQL query language.

C. SPARQL-BASED NAVIGATIONAL APPROACHES
SPARQL is a standard language to query RDF and linked
data. Recently, SPARQL 1.1. introduced navigational fea-
tures called Property Paths. However, SPARQL property path
queries allow only to traverse a single graph. To support this
feature, several algorithms i.e., [2]–[5], [12]–[16] have been
developed to navigate within a single graph. All of those
approaches were aimed to either improve the efficiency of the
pathfinding feature, handle larger graphs, or work for specific
data models/formats (e.g., RDF3X, HDT). In our previous
work [1], we proposed an extension to the Property Path query
feature with some additional features, which are missing
in the current implementation of SPARQL property paths.
However, this work also considered property path queries
within a single graph/data source. All of the systems are
therefore unable to leverage the benefits of path query federa-
tion, although different engines e.g., Apache Jena-based Vir-
tuoso,8 Stardog, etc. implement SPARQL query federation
(i.e. through the SERVICE clause) for other kinds of queries.
In recent years there has been extensive work [17]–[28]
on query federation, however, surprisingly none of them
addressed or implemented the path query federation. Here,
we extend our previous work from a single graph to federated
graphs and address the specific challenges associated with
federating property path queries.

D. PATH INDEXING
To efficiently calculate paths, several techniques such
as [29]–[31] have been proposed in the past. Some of these
approaches are designed for relational databases and employ
a B+tree-based path index, while others are developed for
the RDF model. However, as above, all previous index-
ing approaches are developed for single graph traversal

8https://virtuoso.openlinksw.com

101034 VOLUME 7, 2019

Q. Mehmood et al.: QPPDs

algorithms. We, in contrast, adopted an approach that is used
to calculate paths over the distributed datasets.

E. RDF-BASED PATH FINDING IN DISTRIBTUED GRAPHS
In recent years, in the context of the Semantic Web, ini-
tiatives have appeared [32], [33] and [34], [35] proposing
to process paths over distributed graph data. In [32], [33]
they proposed approaches to retrieve paths over the ‘Web’,
through Linked Traversal. This approach is based on travers-
ing RDF web documents and does not rely on SPARQL
endpoints. Also, in the link traversal-based query procedure,
the biggest challenge is that it might lead to following dead
links, and there is no guarantee of the completeness of the
results. Moreover, as they rely on blind search approaches,
they are most costly in performance, have to rely on a large
number ofhttp requests, and do not employ source selection
criteria. In [34] partial path evaluations are carried out over
distributed datasets. However, this approach follows a cus-
tomized shared algorithm deployed over every dataset. More-
over, in [34], [35] the distribution of the data is controlled
centrally (i.e. partitioned), which is not feasible when using
external data endpoints. In our approach, we do not rely on
a customized distribution of the data but perform pathfind-
ing queries across heterogeneous data distributed (publicly
exposed by different providers) across the network.

To sum-up the related work, existing approaches dif-
fer from our approach mostly by focusing on single data
sources or relying on specific data distribution mechanisms,
assuming control over it. While achieving similar tasks, none
of those systems can therefore be straightforwardly compared
to our approach.

V. THE QPPDS APPROACH
In this section, we explain theQPPDs approach in details. The
QPPDs system has four main components: (1) the QPPDs
index for distributed path computation, (2) path computation
between the connected datasets, (3) distributed path compu-
tation between the resources within the connected datasets,
and (4) the path merger. We explain these main components
in the next sub-sections where we use a running example to
walk through each step in QPPDs.

A. THE QPPDS INDEX
The QPPDs approach makes use of a pre-computed index
for fast retrieval of K possible paths between the source and
target resources in distributed RDF graphs. We assume a set
of data sources D := {D1, . . .Dn} where each data source
D ∈ D is a SPARQL endpoint. We say a connection9(D,D′)
holds between two datasets D and D′ if both datasets have a
common node, i.e., {9(D,D′) | ∃N : N ∈ D ∧ N ∈ D′}.
Furthermore, Rs(D,D′) represents all such common nodes
between D ∧ D′ ∈ D. For each data source D ∈ D, QPPDs
stores the following as index:

1) The set of datasets connected to D: Cs(D) :=

∀D′∈D{D′ | 9(D,D′) ∧ D 6= D′} (:connectedTo).

Listing 2. The QPPDs index of the datasets of motivating example given
in Figure 2a.

2) For each dataset D′ ∈ Cs(D) the set of resources which
connects (i.e., common) D and D′, i .e., Rs(D,D′)
(:isCommonIn).

Listing 2 shows an excerpt of the corresponding index
of the datasets of the example given in Figure 2a. Please
note that we used a simplified representation for the sake
of simplicity. In reality, our index is represented as valid
RDF in the NTriples format. We compute the index of the
datasets by simply sending relevant SPARQL queries to the
corresponding endpoints of the datasets.

Algorithm 1 shows the QPPDs index generation, which
takes the set of all datasets D as input and returns the cor-
responding QPPDs index I as output. For each datasetD∈D,
we first get the set of all URI nodes (i.e., resources) N
(Lines 1-2 of Algorithm 1). The set of all URI nodes from
a dataset are retrieved by using a single SPARQL SELECT
query given in Listing 3. For each nodeN∈N , we then create
a SPARQL ASK query (given in Listing 4) and send it to all
datasetsD (Lines 3-5 of Algorithm 1). The datasets that return
true to given SPARQL ASK are treated as connected toD and
share a common node N . All common nodes are added to the
index (Lines 6-9 of Algorithm 1).

Algorithm 1 QPPDs Index Construction

input : D := {D1, . . .Dn} ; /* All datasets */
output: I; /* The QPPDs index */

1 foreach D∈ D do
2 N← getURINodes(D) ;
3 foreach N∈ N do
4 foreach D’ ∈ D ∧ D′ 6= D do
5 b← ASK(N,D’) ;
6 if (b == ‘true’) then
7 I.add(D : connectedTo D′) ;
8 I.add(N : isCommonIn D′) ;
9 end

10 end
11 end
12 end
13 return I

B. PATHS COMPUTATION BETWEEN DATASETS
In Linked Data (our use case), RDF datasets are intercon-
nected via various links. Consider our motivating example

VOLUME 7, 2019 101035

Q. Mehmood et al.: QPPDs

Listing 3. SPARQL to select all subject and object.

Listing 4. SPARQL to ASK subject and object.

given in Figure 2a, all three datasets are interconnected via
different links as shown in Figure 3. In order to compute
paths – for a given query (see Listing 6) – between resources
within the distributed datasets (algorithm 3), we first need
to compute all the possible paths to reach from one dataset
to another dataset. For example, in our synthetic motivating
example, the possible paths between dataset D1 and dataset
D2 (under the condition that the maximum allowed repe-
tition of nodes in a path equals 2) are given in Listing 7.
Thus, to compute all the possible paths between two datasets,
we first need to make a graph of datasets similar to Figure 3
and then apply some algorithm on this graph to retrieve the
required paths. We make use of the index (i.e Listing 5) to
get the required graph of datasets and then apply a simplified
version of Breadth-First-Search (BFS) with some modifica-
tions to calculate the paths over the given graph. Algorithm 2
explains how the paths are calculated from the source and
target datasets in a multi-graph of interconnected datasets.

Algorithm 2 finds k paths between the source and target
nodes in multi-graph. Thus it requires the source node s
(source dataset in our case), target node t , number of
paths k , and multi-graph G as input and retrieves the top-k
shortest paths between the source and target nodes as out-
put. Lines 6 to 11 correspond to a standard BFS-based
approach. However, at Line 12 we slightly diverge from BFS:
During the traversal, if a node is already visited, we do not
consider it as a visited node, but this visited node is again
queued to traverse until it reaches the maximum visited count
of the maximum links between any two nodes in G. For
example, the maximum links between two nodes in the multi-
graph given in Figure 3 is 2. Using this modification, we are
able to retrieve paths involving cycles in the given graph. The
rest of the algorithm corresponds again to a standard BFS
approach where queue q stores all the paths starting from the
start Dsource (e.g. D1) in Listing 7 ordered by path length.
In every next iteration, the path p is extracted from the queue q
extending p by one hop edge. The new extended path p′ along
with the previous path is again queued and whenever the next
extended edge leads to the Dtarget , (i.e. D2) in Listing 7, this
complete path is stored in the list of solutions sol (Line 18 of
Algorithm 2). When the number of the solution reaches k ,
the traversing process is terminated.

C. DISTRIBUTED PATH COMPUTATION
In this section we explain, in detail, the QPPDs distributed
path computation given in Algorithm 3. The algorithm takes

Algorithm 2 Algorithm to Find k Paths Between Source
and Target Datasets

1 s← Dsource ; /* source node */
2 t← Dtarget ; /* target node */
3 k← Kpaths ; /* search number of TopK
paths */

4 D← G ; /* A multi graph generated by
CONSTRUCT query over index */

5 sol← ∅ ; /* solution (retrieved
properties) */

6 q[∅]← |Ti, . . . ,Tn| ; /* queue of triples
T(s,p,o) */

7 while (Di)ni=1 6= ∅ do
8 q← {T (s, p, o)} ; /* pull and remove

triple(T) with source node into
queue */

9 while q 6= ∅ do /* check until queue is
empty */

10 (tpi)
n
i=1← q.T (s, p, o) ; /* get all child

nodes of source node(s) and
corresponding triples(tp) */

11 for (tpi)
n
i=1 do

12 if (tp(o)i = literal) ∨ (isVisted(tp(o)i) >=

maxNodesLinks) then ; /* move next

*/
13

14 continue;
15 else if (tp(o)i = t) then ; /* if target

node found */
16

17 p← path(tp(o)i) ; /* store path

*/
18 sol← p ; /* solution is found

*/
19 flag← true ; /* do not store

in queue since path is
found */

20 if sol.size ≥ K then
21 return sol;
22 end
23 else if flag← false then
24 q← q.add(tp(o)i)
25 return sol ; /* return solution */
26 end
27 end
28 end

the source node nsource and target node ntarget for which all
paths are required to be computed over the set of distributed
datasets D. The algorithm –incorporating with previous
algorithms 1 and 2– retrieves all distributed paths between
the required two nodes.

The source and target datasets (i.e., Dsource and Dtarget ,
respectively) at step 1: are selected, by sending SPARQL

101036 VOLUME 7, 2019

Q. Mehmood et al.: QPPDs

FIGURE 3. Multi-graph of datasets connectivity of our running example.

Listing 5. SPARQL Construct query to find the :connectedTo.

ASK queries to all of the datasets D, before the actual path
query in Listing 6 for nsource and ntarget is executed. The
datasets which return true for nsource are added to set S and
datasets which return true for ntarget are added to set T (Lines
2-5 of Algorithm 3). In our running example, nsource is F and
ntarget isE . SinceF can only be found inD1, hence S := {D1}
and E is only present in D2, therefore, T := {D2}.
In step 2:, we need to compute possible paths from source

datasets S to target datasets T within the generated index.
To do so, we compute the multi-graph G, showing how the
datasets in S are connected to the datasets in T (Line 7 of
Algorithm 3). This graph can be constructed from the QPPDs
index by using a SPARQL CONSTRUCT query given in
Listing 5. Figure 3 shows the corresponding multi-graph of
the datasets used in our running example. Now graphG can be
considered as a single RDF dataset and Algorithm 2 is used to
find paths within the graphG. To this end, we runAlgorithm 2
over graph G to find all paths from all the datasets in S to all
the datasets in T (Lines 8-12 of Algorithm 3). In our running
example, since S := {D1} and T := {D2}, we need to find
all possible paths from D1 to D2 in the multi-graph G given
in Figure 3. SinceG is a multi-graph with cycles, it is possible
that we can have an infinite number of possible paths. How-
ever, according to graph theory, we can still retrieve complete
paths while allowing a maximum number of repetition of a
node within a path equal to the maximum number of edges
between two nodes in graph G. In the multi-graph given
in Figure 3, the maximum number of edges between any two
datasets is 2 (i.e., between D1 and D2). Under this condition,
the paths retrieved by Algorithm 2 over the graph of Figure 3
are given in Listing 7.

Until step 2: of the algorithm 3, we have computed all
paths from the source datasets (containing resource nsource) to
target datasets (containing resource ntarget). However, these
paths are only at the dataset level, i.e. linking a dataset to

Algorithm 3 QPPDs Distributed Property Paths Finding
Algorithm
input : Q = nsource ∧ ntarget , D := {D1, . . .Dn} ;

/* query, set of all datasets */
output: P ; /* Set of distributed paths */

1 /* Step 1: get source and target datasets */
2 foreach D∈ D do
3 S← Dsource + ASK(nsource,D) ;
4 T← Dtarget + ASK(ntarget ,D) ;
5 end
6 /* Step 2: get all paths from each source to target datasets */
7 G← getConnectedGraph(S,T) ;
8 foreach s ∈ S do
9 foreach t ∈ T do
10 SP← SP + getPaths(G,s,t)
11 end
12 end
13 /* Step 3: get distributed paths from source resource to

target resource */
14 foreach p ∈ SP do
15 pathLength← p.length ;
16 count← 0 ;
17 sources []← Ø ; /* array of source

resources */
18 curDataset← p.getNextDataset() ;
19 sources.addResource(nsource);
20 while (count < pathLength) do
21 nextDataset← p.getNextDataset() ;
22 if (nextDataset 6= Ø) then
23 targets []← getCommonIn(curDataset,

nextDataset);
24 sources []=ifNodeHasChild (sources,

curDataset);
25 targets []= ifNodeHasParent (targets,

curDataset);
26 /* These nested loops work in batch style ;
27 and generate query accordingly */
28 foreach source in sources [] do
29 foreach target in targets [] do
30 Q← generateQuery (source,

target);
31 P’← FedRequest(curDataset,Q) ;
32 end
33 end
34 curDataset← nextDataset ;
35 sources []← targets [];
36 end
37 else
38 target← ntarget ;
39 foreach source in sources [] do
40 Q← generateQuery (source, target);
41 P’← FedRequest(curDataset,Q) ;
42 end
43 end
44 count++;
45 end
46 return P← mergePaths(P’);
47 end

VOLUME 7, 2019 101037

Q. Mehmood et al.: QPPDs

Listing 6. QPPDs SPARQL path query.

Listing 7. Possible paths from D1 to D2 in multi-graph given in Figure 3
with a condition of max. allowed repetition of node in a path equals 2.

Listing 8. SPARQL query to find the common nodes between datasets.

another dataset, and do not tell us how to go from a node to
another node within the distributed datasets. We achieve this
in step 3 of the algorithm. In step 3:, we follow dataset paths
computed in the previous step to get actual paths at node-
level.

Wemaintain a list of all the dataset paths p ∈ SP calculated
bewteen Dsource and Dtarget . For each path p ∈ SP, we first
compute its length, i.e. the number of datasets to be tested
for query Q = nsource, ntarget (Line 15 of Algorithm 3). For
example, in Listing 7 the first dataset path p1 is D1 → D2
with length 2. We then initialize a counter, an array of source
resources, get first dataset from the path, and add nsource
(i.e., F) into array of source resources. For p1 of our running
example, curDataset would be D1 and resource F would be
added into the sources array. Now at Line 20, we check if the
count is less than path length, which is true in the current state
of our running example (i.e., count = 0, pathLenghty = 2).
We get the next dataset (D2 at current) from the path and
store in nextDataset . Since the next dataset is not empty,
we get all the common nodes in curDataset and nextDataset
(Lines 21-23 of Algorithm 3) from the index. In our running
example at present, the common nodes between D1 and D2
are A,D and these common nodes are added in to the target
set. The common nodes between two datasets are retrieved by
using the query given in Listing 8.

Walking through the running example, when we have
two sets of sources = {F}, targets = {A,D} and dataset
curDataset = D1 as well as the nextDataset = D2
(Lines 18-21 of Algorithm 3), we perform three steps to opti-
mize our approach, just before sending the remote requests to
curDataset = D1.

1) We check the set sources for all its elements
(i.e., nodes) in the curDataset = D1 if they have
children (Line 24 of Algorithm 3). After filtering out
all nodes with no children, we get an updated set of
sources. We do this because a path search should stop at
a node having no further children. At the current stage
of our running example, the sources set contains F ,
which has children, sowe add it to the query generation.

2) Similarly, we filter out the targets set for the
curDataset = D1 and discard all target nodes who
do not have parent nodes except the ntarget (Line 25 of
Algorithm 3). At the current stage of our running exam-
ple, nodes {A,D} in set targets both have parents and
are therefore not to be discarded.

3) We also check if nsource = ntarget . If true we do not
count this combination in path search, because this
points to the same node.

In our running example, after applying the first two opti-
mization techniques, we still maintain sources = {F},
targets = {A,D}, however, it is important to note that
it would not always be the case in real-life data. From
Line 28-32 of Algorithm 3, nested loop for sources and
target respectively iterate in a batch style (depending on
user settings) and generate the nested SPARQL path query Q
while considering the third optimization technique (Line 30
of Algorithm 3). We discuss the impact of a batch-based
nested query in the results section. In our running example,
the generated SPARQL query (see Listing 6) is sent to the
curDataset = D1. The results P′, i.e., {F → K → A}, {F →
G → A} retrieved from D1 are stored against this dataset.
It is important to note that P′ represents the partial paths.
However, it does not mean that partial paths set P′ will
maintain always incomplete paths, but in real-world scenarios
there may be many cases of complete paths retrieved and
stored in P′.
When the iteration for curDataset = D1 is finished and

the next dataset (i.e., D2) becomes the curDataset = D2 and
set of targets (i.e., {A,D}) becomes the sources (Lines 34-35
of Algorithm 3), the procedure jumps back to Line 21 of
Algorithm 3, where it checks if more datasets are available.
In the current scenario of p1: (see Listing 7) D2 is the last
dataset, therefore, control goes to Line 39 of Algorithm 3.

Now at Line 39, we get sources (i.e. {A,D}) and the targets
set will only contain the actual target resource ntarget since
there is no further dataset to explore, which means no more
common node needs to be checked. From Lines 39-42 of
Algorithm 3, the query is generated for each element of the
loop as source, while keeping target node static –i.e., actual
target node E of the query executed by user– and sent to
curDataset = D2. we get results P′, i.e., {A → B → E},
which are stored against D2. At this stage, the length of
count reaches to maximum, therefore the processing of p1:
(see Listing 7) is terminated and control goes to Line 46
of Algorithm 3.

Now at Line 46 of Algorithm 3, a mergePaths Algo-
rithm (Algorithm 4) is called, which merges all the remote

101038 VOLUME 7, 2019

Q. Mehmood et al.: QPPDs

paths, P′{F → K → A}, {F → G → A} from D1 and
{A → B → E} from D2, to complete full paths P. After
merging the paths we get a set of; P{F → G→ A→ B→
E}, {F → K → A→ B→ E}.
So far, we have obtained the paths that are direct

paths, meaning one-to-one relations between two connected
datasets and no third dataset contributes in path computation.
However, there may be many cases where indirect paths
exist as shown in Figure 2b, where paths #3 and #4 are
indirect paths.

We step through in the following paragraph to understand
that how Algorithm 3 works when it encounters indirect
paths.
Indirect Paths :

In our running example, we take path #3 i.e., (F → K →
A → B → C → D → E). Unlike the previous paths
discussed before, which involve only two datasets (i.e. D1
and D2), the indirect path involves three datasets (i.e. D1, D2
and D3) to complete it between F and E .

Having provided a detailed explanation before, we here
provide only a simplified description.

This particular path #3 is calculated when Line 10 of
Algorithm 3 faces p7: D1 → D2 → D3 → D1 →
D2 dataset path connectivity given in Listings 7. If we
notice here, the first two datasets of p7: i.e., D1 → D2,
have already been explained for p1:. For simplicity, we skip
their computation since we know that D1 and D2 return P′

{F → K → A}, {A → B → E} respectively. In the
case of p7:, the algorithm does not terminate, since dataset
D2 is further connected to D3, but further iterations are
performed.

Lets say two iterations (Itr1,2) were carried out for
previous datasets. Hereon, we will use Itri for iteration
number.

At Itr3, D2 becomes curDataset = D2 and sources set is
initialized with {A,D} (i.e. common nodes of D1 and D2).
During Itr3,D3 becomes nextDataset = D3. Common nodes
(i.e. {B}) between D2 and D3 are added to targets. At the end
of Itr3, when {A,D} × {B} is checked against D2, we get P′

{A→ B} against D2.
At Itr4, D3 becomes curDataset = D3 and {B} is added

to sources. During Itr4, D1 becomes nextDataset = D1.
Common nodes (i.e. C) between D3 and D1 are added to the
targets. At the end of Itr4, when {B}× {C} is checked against
D3, we get P′ {B→ C} against D3.
At Itr5, D1 becomes curDataset = D1 and {C} is added

to sources. During Itr5, D2 becomes nextDataset = D2.
Common nodes {A,D} between D1 and D2 are added to
targets. At the end of Itr5, when {C} × {A,D} is checked
against D1, we get P′ {C → D} against D1.
At Itr6, D2 becomes curDataset = D2 and {A,D} are

added to sources. During Itr6, Algorithm 3 finds no further
dataset to explore (see p7: in Listings 7). At this stage the
targets will only be one (i.e., ntarget = E). At the end of
Itr6, when {A,D} × {E} is checked against D2, we get P′

{D→ E},{A→ B→ E} against D2.

When computation is completed for p7: (Listings 7), the set
{P′} contains all the direct and indirect paths computed
by Algorithm 3. Now, the mergePaths (see Algorithm 4)
component takes the set of {P′} and produces the complete
paths P.

A complete list of paths shown in Figure 2b is generated
when datasets paths (p1:–p8:) with the above-mentioned pro-
cedures are completed.

D. PATH MERGER
When the QPPDs Algorithm 3 has finished its task, we get a
set of P′ against each dataset. This P′ is given to Algorithm 4,
which assembles all the paths in such a way that we get a list
of complete paths P. To explain the path merger algorithm,
let’s take our running example. We step through the two cases
direct paths and the indirect paths for given query where
nsource = F and ntarget = E .

Algorithm 4 Path Merger Algorithm

input : [D]P′ ; /* P′ against relevant
datasets */

output: P ; /* Set of distributed paths

*/
1 for (Di)ni=1 6= ∅ do
2 if [Di]p′ .prefix = nsource ∧ [Di]p′ .postfix = ntarget

then
3 P← p′;
4 else if [Di]p′ .prefix = nsource ∧ [Di]p′ .postfix =

[Di+1]p′ .prefix ∧ [Di+1]p′ .postfix = ntarget then
5 P← p′ ; /* store path */
6 else if [Di]p′ .postfix! = ntarget ∧ [Di+1]p′ .prefix =

[Di]p′ .postfix then
7 [Di+1]p′ ← [Di]p′ .concat([Di+1]p′)
8 end
9 return P ; /* return solution */

Case-1 Direct Paths:
We explained earlier that the direct paths are calculated

when Algorithm 3 comes into contact with the p1: shown in
Listings 7. In this case, we get two paths P′ {F → K →
A}, {F → G → A} against D1, and also two paths P′

{A→ B→ E}, {D→ E} againstD2. Note that the algorithm
4 iteratively performs all steps, where it can go back-and-forth
during the iteration. At Line 2 of Algorithm 4, it checks if
any path in D1 either starts with nsource = F or ends with
ntarget = E . If true, it will be stored in P. In theD1 case there
is no such path that satisfies the previous condition. So all
paths P′ of D1 are checked against the next dataset paths P′.
At Line 4 of Algorithm 4, it checks if any path P′ from D1
starting with nsource = F and ending with any node that is
equal to the starting node of any path P′ exists in D2. For p1:,
in this case, condition becomes true (Line 4 of Algorithm 4)
and we get complete paths in P {F → K → A → B →
E}, {F → G → A → B → E}. The path P′ {D → E} is

VOLUME 7, 2019 101039

Q. Mehmood et al.: QPPDs

discarded, as it does not satisfy the applied condition at Line
4 of Algorithm 4.
Case-2 Indirect Paths:

In the case of Indirect paths, when Algorithm 3 has solved
p2:–p8 shown in Listings 7, we get the following paths P′

{F → K → A}, {F → G → A}, {C → D} against D1,
paths P′ {A → B → E}, {D → E}, {A → B} against D2,
and also one path P′ {B → C} against D3. At Line 4 of
Algorithm 4, we get two complete paths P {F → K →
A → B → E}, {F → G → A → B → E}, however,
Algorithm 4 does not terminate at this stage. At Line 6 of
Algorithm 4 concatenates the path from D1 and D2, i.e.
{F → K → A → B}, {F → G → A → B}. In next
iteration when D1 is checked against D3, we get {F → K →
A → B → C}, {F → G → A → B → C} at Line 6 of
Algorithm 4. Next iteration at Line 6 of Algorithm 4 generates
{F → K → A → B → C → D}, {F → G → A → B →
C → D}. In the next iteration when algorithm at Line 4 of
Algorithm 4 checks the condition, we get complete paths P
{F → K → A → B → C → D → E}, {F → G → A →
B→ C → D→ E} and algorithm 4 is terminated.

VI. EVALUATION
In this section, we present the evaluation results of the QPPDs
approach. We first explain the evaluation setup, followed by
evaluation results and discussion.

A. EXPERIMENTAL SETUP
Since, to the best of our knowledge, there exists no publicly
available benchmark to test the distributed property paths
retrieval systems on top of distributed RDF datasets, we had
to create a benchmark by ourselves. Now we explain the
datasets and path queries used in our evaluation.

1) DATASETS
In our evaluation, we used 8 datasets – Disease, hpoClass,
doClass, phenotype, Protein, Variant, Gene, and panther-
Class – from a life-sciences domain with a combined total
of 7.26 millions of triples. The ‘‘Disease’’ dataset contains
information about the disease associated with at least one
gene. The ‘‘Human Phenotype Ontology’’ (hpoClass), and
‘‘Disease Ontology’’ (doClass) both individually are the clas-
sification of the genes. The dataset ‘‘Phenotype’’ contains
the cross-referenced IDs extracted from HPO. The dataset
‘‘Protein’’ is the UniProt IDs encoded by genes. ‘‘Variant’’ is
the dataset that contains the variants associated to diseases.
The ‘‘Gene’’ dataset contains gene information associated
to disease. The dataset ‘‘PantherClass’’ classifies the genes’
attributes according to the molecular functions.

We chose these datasets because they are interconnected
and contain resources that are relevant to each other. Some of
the high-level statistics of these datasets are shown in Table 1.
All of the datasets used in our evaluation are publicly avail-
able from disgenet providers.9

9http://rdf.disgenet.org/download/v5.0.0/

TABLE 1. Disgenet datasets statistics.

Setting: We loaded each dataset into different Fuseki server
instances, where our baseline algorithm already knit-in to
each Fuseki server calculates and finds the paths for a given
query request.

2) PATH QUERIES
We wanted to test our approach on the most complex
SPARQL1.1 property path10 queries, where we did not spec-
ify any regex expression but to find the arbitrary paths based
on the wild card (i.e., (:|! :)∗).

We chose a total of 12 path queries for benchmark-
ing, where each path query contains the source and target
resources from selected benchmark datasets. The total num-
ber of possible paths P, the number of hops or nodes in the
given path (along with max., min., avg., and std.), and the
number of datasets (along with max., min., avg., and std.)
involved inP are given in Table 2.While constructing the path
queries, we considered carefully that paths between source
and target must have multiple datasets involved. We fixed
the query time-out to 90 seconds, meaning that if a query
is not executed within the time limit, it is considered as a
failure.

3) HARDWARE AND IMPLEMENTATION SETUP
We conducted path experiments on a local setup (i.e., local
network) to maintain the network cost as low as possible. The
8 datasets used in our benchmark were loaded into Fuseki
server version (1.3.0 2015-07-25T17). We used a cluster of
8 machines (Ubuntu OS) with 2.9GHzx8 Intel Core i7 pro-
cessors, 4GB of RAM, and 250GB of storage capacity to
run 8 Fuseki server. The QPPDs engine is implemented in
Java 1.8, using Jena API. To run QPPDs, we used MacBook
Pro (Mojave OS) with 2.6GHz Intel Core i5 processor, 16GB
of RAM, and 500GB of storage capacity. The code and all the
configurations are available at GitHub.11

4) METRICS
The metrics with which these queries were evaluated are:
(i) the index generation time (ii) the index compression
ratio,12 i.e, the index size to dataset size ratio (iii) the number
of sources selected for each query, (iv) source selection time,

10https://www.w3.org/TR/sparql11-property-paths/
11https://github.com/InsightGalway/Path-Federation
12Index ratio: indexSize/datasetSize

101040 VOLUME 7, 2019

Q. Mehmood et al.: QPPDs

TABLE 2. Various characteristics of the benchmark path queries.

(v) number of hops in the paths (vi) the time taken to retrieve
k paths. We provide a URL13 for a SPARQL endpoint that
contains the information about retrieved paths. On theGitHub
page, we provide sample queries to check the different
metrics.

5) BASELINE
The focus of this paper is to introduce a federation-based
approach to path finding in distributed RDF datasets. To do so
and considering the overhead involved in federation, we pre-
sented above several algorithms that include a number of
features aimed at reducing the response time for individ-
ual queries. We therefore here assess the contributions of
those features by comparing response times with and without
those features, starting from a baseline corresponding to an
implementation of QPPDs without the following optimiza-
tion steps:

1) Nodes Connectivity:Asmentioned before, the QPPDs
approach only searches for complete paths if the inter-
mediate nodes have both child and parent nodes. This
is because a node without children or parent will ter-
minate the current path computation. Therefore, before
doing any processing on the given node, the QPPDs
approach first checks for its child and parent node.
In the baseline approach, we are not applying this
filter until the algorithm itself discovers that the path is
complete and terminates the processing for the current
path search.

2) Streaming approach: The QPPDs approach works in
batches of paths (as explained in section V-C), i.e,
a streaming approach for path computation. The base-
line algorithm does not work in batches.

3) Requests Grouping: Our distributed path compu-
tation algorithm sends multiple path requests to
the underlying datasource, i.e., SPARQL endpoints.
The QPPDs approach has this feature to com-
bine multiple path requests into a single compos-
ite request. However, in the baseline algorithm, only

13http://vmurq09.deri.ie:8030/sparql.tpl

one path request is sent to the endpoint at a given
time.

4) Same Source-Target Filtering: It is also possible that
for a given path query the source and target nodes
are exactly the same. The QPPDs approach filters
out such requests before sending them to the remote
SPARQL endpoints, hence the number of requests is
reduced.

The impact of these missing features on the performance of
the baseline algorithm is discussed in the next section. While
comparing with other path querying approaches would be
valuable, at this point, that those are applicable to different
contexts, and often unavailable, prevents us from being able
to conduct a fair comparison.

B. RESULTS
1) INDEX GENERATION TIME
The QPPDs and the baseline approach both use exactly the
same index of the given RDF dataset. Even though it is a one
time process (assuming that no datasets updates), the index
should be generated in a reasonable amount of time. Figure 4
shows the index generation time for each of the benchmark
datasets. We can clearly see that the index generation time
is dependent upon the size of the underlying dataset. The
maximum time to compute the index for the largest dataset, i.e
Variant, is only 136.6 seconds. The overall time to compute
the indexes for the complete benchmark datasets is less than
6 minutes.

2) INDEX SIZE
The index should be small in size for fast lookups at runtime.
The contribution of each of the benchmark datasets to the
size of the index is shown in Table 3. We can clearly see
that the indexes generated by our approach is very small in
size. The cumulative size of the QPPDs index generated for
all 8 datasets is only 6.1MB.

3) SOURCE SELECTION
As mentioned before, each of the benchmark path queries
contains the source and target nodes, distributed in multiple

VOLUME 7, 2019 101041

Q. Mehmood et al.: QPPDs

FIGURE 4. Index generation time.

TABLE 3. Index size for each dataset.

TABLE 4. Number of datasets selected for the source and targets nodes
of path queries.

datasets. Thus, it is possible that the given source or target
node is found in more than a single dataset. We define source
selection results in terms of: (1) the number of datasets which
contain the source and target nodes of a given path query
(see Table 4), (2) the time required to identify the source and
target datasets for the given path query (see Figure 5). Please
note that the source selection of both baseline and QPPDs
approach is exactly the same, thus these results are the same
for both approaches.

From the results given in Table 4 and Figure 5, we can
see that the QPPDs approach is able to quickly filter out
(requiring milliseconds) the irrelevant sources.

4) QUERY RUNTIME PERFORMANCE
Figure 6 shows the query execution time for all 12 queries
used in our evaluation. We observed that in two-third of the
cases – for queries Q1, Q2, Q3, Q4, Q6, Q7, Q9, and Q10
– QPPDs outperformed the baseline algorithm with almost

FIGURE 5. Time required to select the source and target datasets of
benchmark path queries.

one order of magnitude. It is because, for all these queries,
the possible paths between the connected datasets are very
high comparing other queries. Thus, these queries generate
more endpoint requests. The QPPDs, with its salient features,
(in particular checking for the child and parents of nodes
beforehand) generates fewer requests as compared to the
baseline approach. For the other queries Q5, Q8, Q11 and
Q12 the baseline approach performs better as compared
to QPPDs. This is because these queries are rather simple
and need smaller time as compare to other queries. Thus,
the QPPDs approach spends extra time for checking the
child and parent of nodes involved in the final path. We can
conclude that the QPPDs approach generally performs better
for complex path queries.

a: SCALABILITY OVER NUMBER OF SITES AND DATA SIZE
We noticed that the datasets involved in the results obtained
from queriesQ1, Q2, Q3, Q4, Q6, Q7, Q9, and Q10, are big
in size (see Table 2) and have more connected nodes between
these datasets. This shows that the full QPPDs approach
improves response time, as compared to the baseline, in the
following situations for a given query:
• if the required path is distributed across more sites
(datasets)

• if datasets are large in size
It is important to note that the comparison shown

in Figure 6 is when a single path request is sent to the
underlying triplestores, i.e, the request grouping feature of
the QPPDs is not activated. In the next section, we will see
that the performance of QPPDs further improves with this
optimization parameter.

5) EFFECTS OF QPPDS OPTIMIZATION PARAMETERS
Now we show how much the query performance is effected
either by enabling or disabling the QPPDs optimization
parameters.

a: REQUESTS GROUPING
Figure 7 shows the query runtime performances by using a
single request per query (QPPDs-1), grouping two requests

101042 VOLUME 7, 2019

Q. Mehmood et al.: QPPDs

FIGURE 6. Query runtime performances of the QPPDs and baseline
approaches when request grouping feature is not activated in QPPDs.

FIGURE 7. Effect of request grouping feature.

per query (QPPDs-2) and grouping three requests per query
(QPPDs-3). The overall results show that the performance is
improved with the grouping of results. In most of the queries
the performance is further improved when we increased the
grouping size of requests. However, for QPPDs-3, the queries
Q9, Q10 resulted in a time-out (90 sec). This leads to
the question of whether the performance will be further
improved if we further increase the grouping size. We tested
with QPPDs-4 (i.e, grouped 4 requests per query) and
noticed that the performance significantly dropped compared
to QPPDs-3. We investigated the reason and noticed that
the SPARQL endpoints hosting the underlying datasets were
not able to handle more complex requests and hence started
giving timeouts. Thus, the performance of QPPDs is also
strongly dependent on the query processing capabilities of
the underlying triplestores. We believe that if efficient path
finding algorithms on remote endpoints are deployed, the per-
formance of the QPPDs can further be enhanced.

b: SAME SOURCE-TARGET FILTERING
Figure 8 shows the effect of checking if the source and
target represent the same node and hence skipping the path
calculation process. Overall, enabling this feature improved

FIGURE 8. Effect of filtering same source and target nodes.

FIGURE 9. Effect of checking if a given node has child node.

the query runtime performance for all of the 12 benchmark
queries. On average, the runtime is improved by 19% by
enabling this feature.

c: NODE HAS CHILD
Figure 9 shows the effect of checking if a node has missing
child nodes and if the current path is broken, i.e it cannot reach
the desired target node. Enabling this feature has resulted
in improving the runtime performance for 9/12 queries. For
queries Q8, Q11, Q12 the performance is degraded. The
reason for this is that the datasets involved in each query
have more parent to child relations. However, the connected
relations are not involved in the construction of the path.
Hence, processing these relations takes more time compared
to disabling this feature. On average, the runtime performance
is improved by 22% by enabling this feature.

d: NODE HAS PARENT
Figure 10 shows the effect of checking if a node has a missing
parent node and the current path is broken, i.e, it cannot
reach the desired target node. Enabling this feature resulted
in improving the runtime performance for 5/12 queries.
For queries Q3, Q5, Q7,Q8,Q10,Q11 the performance is
degraded. The reason for this is that the targeted datasets

VOLUME 7, 2019 101043

Q. Mehmood et al.: QPPDs

FIGURE 10. Effect of checking if a given node has parent nodes.

TABLE 5. Comparison of the paths retrieved by the baseline approach
and our QPPDs approach.

involved in query processing have more nodes that have
parent nodes, and calculating these relations by enabling this
feature takes more time. On average, the runtime is improved
by 17% by enabling this feature.

6) RESULTS COMPLETENESS
To verify the QPPDs results completeness, we merged these
8 datasets into single graph and tested with the centralized
approach ‘‘TopK’’ presented in our previous work [1]. Table 5
shows the comparison between the QPPDs, TopK, and base-
line approaches in terms of total number of paths retrieved,
maximum and minimum length (number of hops) of these
paths. We noticed that for all queries the returned results are
the same in the three approaches, except for one query. The
query Q2 with the baseline algorithm returned fewer paths
(i.e., 81) and with a maximum path hops 15. While on the
other-side QPPDs returned 257 paths with maximum path
hops 37. This is because the baseline algorithm sent more
parallel requests to some of the remote endpoints, exceeding
the endpoint limit to handle the requests and hence started to
give the exception Cannot assign requested address.

VII. CONCLUSION
The motivation behind this work is the need of the
BIOOPENER project, which aims at linking and discovery
of linked data across cancer and biomedical data at publicly
available distributed triple stores. In this paper, we laid the

foundation for distributed path queries and propose QPPDs,
a path traversal approach that federates path queries across
multiple SPARQL endpoints. The current SPARQL 1.1 Prop-
erty Path specification and the standard traversal algorithms
(BFS, DFS, A*, etc.) assume (or require) a single graph –
or many graphs merged into a centralized graph – for graph
traversal. QPPDs proposes a four-step approach that enables
graph traversal in a federated environment. Our initial evalua-
tion results are encouraging where QPPDs retrieves the paths
in a competing query processing time. QPPDs contributes to
path query federation in terms of (i) the source selection cri-
teria to find the relevant datasets, (ii) the distribution of path
queries in a batch style to remote endpoints. QPPDs, at the
moment, applies to RDF data graphs. However, the approach
is generalizable to other kinds of graphs (e.g., weighted,
unweighted, property, etc.).

In terms of future work, there are a number of possible
routes to optimize the current four-step process: we plan (i)
to implement a heuristic indexing approach, so we can send a
fewer number of remote requests, (ii) to test our approach on
other available open access data engines which support path
queries (e.g., Neo4J, Stardog, etc.), (iii) to extend its support
for all types of Regular PathQueriesRPQ, and (iv) to optimize
QPPDs in such a way that, instead of traversing all commonIn
combinations, if the user asks for K paths, it should terminate
its processing when K is reached.

ACKNOWLEDGMENT
This article is based on the preliminary work [36] – traversing
federated RDF graphs – presented previously.

REFERENCES
[1] V. Savenkov, Q. Mehmood, J. Umbrich, and A. Polleres, ‘‘Counting to k

or how SPARQL1.1 property paths can be extended to top-k path queries,’’
in Proc. 13th Int. Conf. Semantic Syst., Sep. 2017, pp. 97–103.

[2] K. J. Kochut and M. Janik, ‘‘SPARQLeR: Extended Sparql for semantic
association discovery,’’ in Proc. Eur. Semantic Web Conf.Berlin, Germany:
Springer, 2007, pp. 145–159.

[3] K. Anyanwu, A. Maduko, and A. Sheth, ‘‘SPARQ2L: Towards support
for subgraph extraction queries in rdf databases,’’ in Proc. 16th Int. Conf.
World Wide Web, May 2007, pp. 797–806.

[4] A. Gubichev and T. Neumann, ‘‘Path query processing on very large RDF
graphs,’’ in Proc. WebDB, Jan. 2011, pp. 1–6.

[5] E. V. Kostylev, J. L. Reutter, and M. Ugarte, ‘‘Construct queries in sparql,’’
in Proc. 18th Int. Conf. Database Theory (ICDT), 2015, pp. 212–229.

[6] R. Simon and S. Roychowdhury, ‘‘Implementing personalized cancer
genomics in clinical trials,’’ Nature Rev. Drug Discovery, vol. 12, no. 5,
pp. 358–369, Apr. 2013.

[7] M. T. Özsu and P. Valduriez, Principles of Distributed Database Systems.
Springer, 2011.

[8] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, ‘‘The Hadoop dis-
tributed file system,’’ in Proc. MSST, vol. 10, 2010, pp. 1–10.

[9] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
‘‘Spark: Cluster computingwithworking sets,’’ inProc. 2ndUSENIXConf.
Hot Topics Cloud Comput., Jun. 2010, p. 95.

[10] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, ‘‘Pregel: A system for large-scale graph processing,’’
in Proc. ACM SIGMOD Int. Conf. Manage. Data, Jun. 2010, pp. 135–146.

[11] D. Yang, D. Zhang, K.-L. Tan, J. Cao, and F. Le Mouël, ‘‘CANDS:
Continuous optimal navigation via distributed stream processing,’’ Proc.
VLDB Endowment, vol. 8, no. 2, pp. 137–148, Oct. 2014.

[12] A. Gubichev, S. Bedathur, S. Seufert, and S. Seufert, ‘‘Fast and accurate
estimation of shortest paths in large graphs,’’ in Proc. 19th ACM Int. Conf.
Inf. Knowl. Manage., Oct. 2010, pp. 499–508.

101044 VOLUME 7, 2019

Q. Mehmood et al.: QPPDs

[13] E. Filtz, V. Savenkov, and J. Umbrich, ‘‘On finding the k shortest paths
in RDF data,’’ in Proc. 5th Int. Workshop Intell. Explor. Semantic Data
(ISWC), vol. 18, Oct. 2016.

[14] M. Przyjaciel-Zablocki, A. Schätzle, T. Hornung, and G. Lausen, ‘‘RDF-
Path: Path query processing on large RDF graphs with mapreduce,’’ in
Proc. ESWC. Berlin, Germany: Springer, 2011, pp. 50–64.

[15] E. V. Kostylev, J. L. Reutter, M. Romero, and D. Vrgoč, ‘‘SPARQL with
property paths,’’ in Proc. Int. Semantic Web Conf. Cham, Switzerland:
Springer, 2015, pp. 3–18.

[16] S. Hertling, M. Schröder, C. Jilek, and A. Dengel, ‘‘Top-k shortest paths
in directed labeled multigraphs,’’ in Semantic Web Evaluation Challenge.
Cham, Switzerland: Springer, 2016, pp. 200–212.

[17] S. Lynden, I. Kojima, A.Matono, and Y. Tanimura, ‘‘ADERIS: An adaptive
query processor for joining federated SPARQL endpoints,’’ in Proc. OTM
Conf. Int. Conf.MoveMeaningful Internet Syst.Berlin, Germany: Springer,
2011, pp. 808–817.

[18] M. Acosta, M.-E. Vidal, T. Lampo, J. Castillo, and E. Ruckhaus, ‘‘ANAP-
SID: An adaptive query processing engine for SPARQL endpoints,’’ in
Proc. Int. SemanticWeb Conf.Berlin, Germany: Springer, 2011, pp. 18–34.

[19] C. Basca and A. Bernstein, ‘‘Avalanche: Putting the spirit of the Web
back into semanticWeb querying,’’ in Proc. Posters Demonstrations Track,
Collected Abstr., vol. 658, 2010, pp. 177–180.

[20] B. Quilitz and U. Leser, ‘‘Querying distributed RDF data sources with
SPARQL,’’ in Proc. Eur. Semantic Web Conf. Berlin, Germany: Springer,
2008, pp. 524–538.

[21] M. Saleem, A.-C. N. Ngomo, J. X. Parreira, H. F. Deus, and M.
Hauswirth, ‘‘DAW: Duplicate-aware federated query processing over
the Web of data,’’ in Proc. Int. Semantic Web Conf. Springer, 2013,
pp. 574–590.

[22] A. Nikolov, A. Schwarte, and C. Hütter, ‘‘Fedsearch: Efficiently combining
structured queries and full-text search in a SPARQL federation,’’ in Proc.
Int. Semantic Web Conf. Springer, 2013, pp. 427–443.

[23] A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt, ‘‘FedX: A
federation layer for distributed query processing on linked open data,’’ in
Proc. Extended Semantic Web Conf., Springer, 2011, pp. 481–486.

[24] O. Görlitz and S. Staab, ‘‘SPLENDID: SPARQL endpoint federation
exploiting VOID descriptions,’’ in Proc. 2nd Int. Conf. Consuming Linked
Data, 2011, pp. 13–24.

[25] M. Saleem and A.-C. N. Ngomo, ‘‘Hibiscus: Hypergraph-based source
selection for SPARQL endpoint federation,’’ in Proc. Eur. Semantic Web
Conf. Springer, 2014, pp. 176–191.

[26] G. Montoya, H. Skaf-Molli, P. Molli, and M.-E. Vidal, ‘‘Federated
SPARQL queries processing with replicated fragments,’’ in Proc. Int.
Semantic Web Conf. Springer, 2015, pp. 36–51.

[27] A. Hasnain, Q. Mehmood, S. S. E. Zainab, M. Saleem, C. Warren, Jr.,
D. Zehra, S. Decker, and D. Rebholz-Schuhmann, ‘‘BioFed: Federated
query processing over life sciences linked open data,’’ J. Biomed. Seman-
tics, vol. 8, no. 1, p. 13, Mar. 2017.

[28] Y. Khan, M. Saleem, M. Mehdi, and A. Hogan, ‘‘SAFE: SPARQL fed-
eration over RDF data cubes with access control,’’ J. Biomed. Semantics,
vol. 8, no. 1, p. 5, Dec. 2017.

[29] G. H. Fletcher, J. Peters, andA. Poulovassilis, ‘‘Efficient regular path query
evaluation using path indexes,’’ Tech. Rep., 2016.

[30] B. Liu and B. Hu, ‘‘Path queries based RDF index,’’ in Proc. 1st Int. Conf.
Semantics, Knowl. Grid, Nov. 2005, p. 91.

[31] J. Sirén, N. Välimäki, and V. Mäkinen, ‘‘Indexing graphs for path queries
with applications in genome research,’’ IEEE/ACM Trans. Comput. Biol.
Bioinf., vol. 11, no. 2, pp. 375–388, Mar./Apr. 2014.

[32] O. Hartig and G. Pirrò, ‘‘SPARQL with property paths on the Web,’’
Semantic Web, vol. 8, no. 6, pp. 773–795, Aug. 2017.

[33] J. Umbrich, A. Hogan, A. Polleres, and S. Decker, ‘‘Link traversal querying
for a diverse Web of data,’’ Semantic Web, vol. 6, no. 6, pp. 585–624,
2015.

[34] X. Wang, J. Wang, and X. Zhang, ‘‘Efficient distributed regular path
queries on RDF graphs using partial evaluation,’’ in Proc. 25th ACM Int.
Conf. Inf. Knowl. Manage., Oct. 2016, pp. 1933–1936.

[35] A. Davoust and B. Esfandiari, ‘‘Processing regular path queries on arbi-
trarily distributed data,’’ in Proc. OTM Conf. Int. Conf. Move Meaningful
Internet Syst. Cham, Switzerland: Springer, 2016, pp. 844–861.

[36] Q. Mehmood, A. Jha, D. Rebholz-Schuhmann, and R. Sahay, ‘‘FedS:
Towards traversing federated rdf graphs,’’ in Proc. Int. Conf. Big
Data Anal. Knowl. Discovery. Cham, Switzerland: Springer, 2018,
pp. 34–45.

QAISER MEHMOOD received the M.Sc. degree
in computer engineering from Mid Sweden Uni-
versity, Sweden. He is currently pursuing the Ph.D.
degree with the Insight Centre for Data Analyt-
ics [formerly Digital Enterprise Research Institute
(DERI)], National University of Ireland Galway,
Ireland, with a focus on distributed path queries
and graph mining. His research interests include
semantic web, query federation, and data catalogu-
ing and linking.

MUHAMMAD SALEEM received the Ph.D.
degree in computer science from AKSW, Univer-
sity of Leipzig. He is currently the Unit Leader
of the Data Storage and Querying Group, DICE,
University of Paderborn, and AKSW, University
of Leipzig. His research interests include SPARQL
query processing and benchmarking, graph parti-
tioning, and question answering over linked data.

RATNESH SAHAY received the bachelor’s degree
in information technology from the University of
Southern Queensland, Australia, in 2002, the M.S.
degree in distributed systems from the KTH Royal
Institute of Technology, Sweden, in 2006, and the
Ph.D. degree in computer science in healthcare
informatics from the National University of Ire-
land, Galway, in 2012. He has more than 12 years
of working/research experiences in healthcare and
life sciences domain. He has been active and lead-

ing European and National Research and Development projects with an
emphasis on e-health and semantic interoperability. He has served as a
member of the OASIS SEE Technical Committee. He is also a member of
the W3C OWL 2, W3C HCLS, and HL7 working groups.

AXEL-CYRILLE NGONGA NGOMO is currently
a Full Professor with the University of Paderborn.
He also leads the Agile Knowledge Engineering
and Semantic Web research (AKSW) and the Data
Science (DICE) Groups. His research interests
include semantic web technologies, especially link
discovery, federated queries, machine learning,
and natural language processing.

MATHIEU D’AQUIN was a Senior Research Fel-
low with the Knowledge Media Institute of the
Open University, where he led the Data Science
Group. He is currently an Established Professor
(Chair) of data analytics with the Data Science
Institute, National University of Ireland Galway,
and the Site-Director of the Insight Centre for Data
Analytics. He is also leading research and devel-
opment activities around the meaningful sharing
and exploitation of distributed information. He has

worked on applying the technologies coming out of my research, espe-
cially semantic web/linked data technologies, in various domains, includ-
ing medicine, education especially through learning analytics, smart cities,
the Internet of Things, and personal data management.

VOLUME 7, 2019 101045

	INTRODUCTION
	MOTIVATING SCENARIO
	CANCER GENOMICS
	RUNNING EXAMPLE

	PRELIMINARIES
	RELATED WORK
	DISTRIBUTED DATABASES
	DISTRIBUTED PATH FINDING ALGORITHMS
	SPARQL-BASED NAVIGATIONAL APPROACHES
	PATH INDEXING
	RDF-BASED PATH FINDING IN DISTRIBTUED GRAPHS

	THE QPPDS APPROACH
	THE QPPDS INDEX
	PATHS COMPUTATION BETWEEN DATASETS
	DISTRIBUTED PATH COMPUTATION
	PATH MERGER

	EVALUATION
	EXPERIMENTAL SETUP
	DATASETS
	PATH QUERIES
	HARDWARE AND IMPLEMENTATION SETUP
	METRICS
	BASELINE

	RESULTS
	INDEX GENERATION TIME
	INDEX SIZE
	SOURCE SELECTION
	QUERY RUNTIME PERFORMANCE
	EFFECTS OF QPPDS OPTIMIZATION PARAMETERS
	RESULTS COMPLETENESS

	CONCLUSION
	REFERENCES
	Biographies
	QAISER MEHMOOD
	MUHAMMAD SALEEM
	RATNESH SAHAY
	AXEL-CYRILLE NGONGA NGOMO
	MATHIEU D'AQUIN

