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ABSTRACT
The volatility forecasting task refers to predicting the amount of
variability in the price of a financial asset over a certain period.
It is an important mechanism for evaluating the risk associated
with an asset and, as such, is of significant theoretical and practical
importance in financial analysis. While classical approaches have
framed this task as a time-series prediction one – using historical
pricing as a guide to future risk forecasting – recent advances in
natural language processing have seen researchers turn to com-
plementary sources of data, such as analyst reports, social media,
and even the audio data from earnings calls. This paper proposes a
novel hierarchical, transformer, multi-task architecture designed
to harness the text and audio data from quarterly earnings confer-
ence calls to predict future price volatility in the short and long
term. This includes a comprehensive comparison to a variety of
baselines, which demonstrates very significant improvements in
prediction accuracy, in the range 17% - 49% compared to the current
state-of-the-art. In addition, we describe the results of an ablation
study to evaluate the relative contributions of each component of
our approach and the relative contributions of text and audio data
with respect to prediction accuracy.

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence; Natu-
ral language processing; Supervised learning by regression;
Multi-task learning; • Information systems → Multimedia in-
formation systems.

KEYWORDS
Volatility forecasting, Hierarchical transformer, Multi-task learning
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1 INTRODUCTION
Predicting how the degree of variability in the price of a financial
asset will vary over a certain period – the so-called volatility of the
asset – is an important financial analysis task. Price volatility is gen-
erally considered to be a useful proxy for the level of risk associated
with an asset and thus it plays an important role in assessing finan-
cial market risk and the pricing of financial derivatives. As a result,
developing effective techniques for predicting price volatility has
become increasingly important among academics and practitioners.

To a large extent, past research efforts have focused on the use
of time-series modeling and prediction techniques using historical
pricing data [33, 41, 66]. However, with recent advances in natural
language processing (NLP) it has become possible to harness novel
sources of data – from unstructured textual data in the form of
financial news [16, 63, 65] and financial reports [23, 32, 47], to real-
time social media [7, 43, 60, 62] – during the prediction process. Of
particular relevance to this work is the information contained in
earnings call transcripts [30, 46, 56], which typically accompany the
earnings reports of publicly traded companies. Generally speaking,
these are conference-calls, in which company executives discuss the
latest results, offer guidance on their expectations for the coming
year, and provide investors and analysts with an opportunity to ask
questions. The information conveyed during conference call, and
particularly the subsequent question-answer session with investors
and analysts, can provide new information (Q&A parts is not well
prepared by executives) into the current state of the company and
it’s future prospects, which, in turn, change investor perception of
firm risk (price volatility). Indeed, recent work has shown how not
only the text of the call can be useful [5, 25, 34], but also the vocal
content and features contained within the call audio [24, 42, 46].

This work seeks to build on this recent research to further explore
the utility of including textual and audio data from earnings calls
for volatility forecasting. The overview of the proposed method is

https://doi.org/10.1145/3366423.3380128
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Figure 1: An overview of the proposed framework. For a given earnings call, the text and audio features are extracted from
transcripts and audio records, respectively, and the resulting features are used as input features for a mult-task learner.

described in Figure 1. The primary technical contributions include
a description and evaluation of a novel, deep-learning architecture
for this task: Figure 2 presents our Hierarchical, Transformer-based,
Multi-Task (HTML) model which combines a hierarchical, trans-
former [55] with multi-task learning [39]. Hierarchical transformer
models [14, 37] have proven useful in many sequence-to-sequence
learning tasks, including machine translation and text summari-
sation, and the approach is used here to extract the text features
from call transcripts that will be used as inputs to the multi-task
learner. Following [46], we extract 27 vocal features including pitch,
intensity, jitter, and the harmonic to noise ratio using Praat [6].
The audio and text features are combined in the information fusion
layer to provide input features for the multi-task learner. Multi-task
learning – exploiting similarities and differences between related,
simultaneous learning tasks – is used because it has proven to be
successful when it comes to controlling for overfitting and improv-
ing generalisation [10], and here we simultaneously learn models
to predict: (1) average n-day volatility (that is, the volatility of the
following n days); and (2) single-day volatility (that is, the volatility
on a single day, n-days in the future).

The remainder of this paper is organized as follows. In the next
section we summarise relevant related work focusing in particular
on the volatility prediction task, hierarchical model, multi-task
learning, and multimedia information fusion. Section 3 presents
a problem formulation before describing our proposed approach
in Section 4 in detail. Before concluding, in Sections 5 and 6 we
presents the results of a detailed evaluation using a benchmark
dataset and in comparison to a number of state-of-the-art baseline
techniques. The results of this evaluation demonstrate clear and
significant prediction accuracy benefits accruing to our proposed
approach, accuracy improvements in the range 17% - 49% compared
to the current-state-of-the-art. Moreover, a detailed ablation study
further clarifies the relative contributions of each model component
and data source to overall prediction accuracy.We believe that these
results establish this as a new performance benchmark for volatility
forecasting.

2 RELATEDWORK
This paper brings together a number of different ideas – volatility
prediction, hierarchical model, multi-task learning, and multimedia
information fusion – and in what follows we briefly summarise the
relevant state-of-the-art in each of these areas, as it relates to the
present work.

2.1 Volatility Prediction
Volatility modeling and prediction is of interest to researchers be-
cause of its theoretical importance and its practical applications.
Conventional approaches [33, 41, 66] rely on historical pricing data
and typically use continuous time-series models (local and stochas-
tic volatility [12, 22, 26, 28, 49, 50]) and discrete time-series models
(e.g. GARCH models [8, 17]).

Recently, research attention has focused on additional sources of
volatility information. Significant improvements in NLP methods,
many applied to sources of financial information [7, 15, 16, 23, 32,
43, 47, 60, 62, 65], demonstrate how mining financial news, analyst
reports, earnings reports, and social media has the potential to im-
prove many financial prediction tasks by harnessing powerful new
features that are absent from traditional time-series data. Moreover,
features derived from the audio features of earnings calls have also
proven to be useful for volatility prediction. For example, [46] in-
corporates CEO’s vocal features, such as emotions and voice tones
in earnings conference calls in predicting volatility of a stock using
a multimodal deep regression model. By modeling the textual and
vocal information contained in a conference call, resulting in a sub-
stantial improvement in volatility prediction accuracy, compared
to classical methods.

The work in [46] is especially relevant in this context of this
work as it provides a starting point for this work, and the best
available baseline against which to evaluate our progress. We argue
that the model proposed by [46] does not sufficiently investigate
the power of both verbal and vocal information and that it fails to
fully exploit the interaction between the text and audio information.
The improvements derive from three aspects. First, we show how
enriched textual and audio data can be extracted from call data
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using co-evolutionary methods. Second, we demonstrate how the
use of a pre-trained language model and hierarchical features can
greatly improve the representations used for learning and predic-
tion. Finally, a key novelty of the present work stems from the way
in which textual and audio features are integrated for multi-task
learning, which, as we shall see later, leads to significant prediction
benefits.

2.2 Hierarchical, Multi-Task Learning
Hierarchical learning techniques have recently proved to be success-
ful across a variety of NLP tasks. Hierarchical attention networks
were first proposed by [64], as a way to generate richer and more
powerful natural language representations, and since then they
have been applied to good effect in tasks such as document classifi-
cation, relation extraction, and machine translation. More recently,
further technical improvements in hierarchical architectures based
on transformers have been developed for tasks such as automatic
text summarization [18, 37]. This suggests that similar techniques
might prove to be useful when it comes to extracting textual feature
from earnings call transcripts.

Multi-task learners solve multiple learning tasks at the same
time, by exploiting commonalities and differences between the
tasks, to provide an effective set of learning constraints that have
been shown to reduce the risk of overfitting, improve generalize
ability, and overall improve the effectiveness of the learned models
compared to the models produced by single-short learners using
the same training data. Multi-task learning has shown particular
promise in NLP [51, 58, 61] and speech recognition [13, 52] tasks.
And the idea of combining hierarchical and multi-task learning, by
using a hierarchical framework consisting of several relevant tasks
as a joint multi-task learning model, was first proposed by [21]; see
also the work of [48] on the use of a hierarchical architecture for
learning word embeddings from semantic NLP tasks.

In this paper we propose a hierarchical, multi-task learning ap-
proach consisting of two financial forecasting tasks. The primary
task involves predicting asset volatility over a given time period
(number of days), while our secondary task involves predicting
asset volatility for a single day. Our intuition is that this multi-task
learning framework will improve prediction performance by re-
ducing the representation bias of our model, and, to the best of
our knowledge, this is the first time that a hierarchical, multi-task
transformer has been used for volatility prediction.

2.3 Multi-modal Information Fusion
In this work we focus on learning from different types of data – text
and audio – which has often proven challenging in the past because
of the challenges associated with combining fundamentally differ-
ent features. However, recent progress in deep learning research
has led to significant improvement in similar multi-modal learning
tasks, whereby high-level embeddings from different types of data
are integrated via a deep neural network [40]. For instance, the
Vision-and-Language BERT (ViLBERT) [38] learns task-agnostic
joint representations of image and natural language content. Else-
where, related ideas have been used to combine text and image
information for multi-modal review generation [53]. And the in-
teraction between text and audio data in a multi-modal learning

framework has been the subject of recent studies in speech commu-
nication, in which acoustic features have been shown to be highly
correlated with emotion [2], trustworthiness [4], and confidence
[27].

To date the use of audio data sources has been all but absent
from financial applications, with the exception of [46]. Given the
effectiveness of recent multi-modal approaches, and the availability
of task-relevant text and audio data for volatility forecasting, it is
clear that these techniques warrant further consideration, hence
the approach is taken in the present work.

3 MEASURING ASSET VOLATILITY
We formulate the volatility forecasting problem as a multivariate
regression task, with textual and audio data as raw inputs, and an
n-day volatility predictions (that is the predicted average volatility
over the following n days) and single-day volatility prediction for
day-n as the dual prediction outputs.

Following [32, 46, 47], we use log volatility [35, 36] as our basic
measure of average n-day volatility; see Equation 1.

v[0,n] = ln ©­«
√∑n

i=1 (ri − r )2

n

ª®¬ (1)

In Equation 1, ri is the stock return on day i and r is the average
stock return in a window of n days. The return is defined as ri =
(Pi − Pi−1)/Pi−1, where Pi is the adjusted closing price of a stock
on day i .

The single day log volatility is estimated by the daily log absolute
return, as in 2, where vn can also be considered a noisy proxy of
log volatility [9].

vn = ln
(����Pn − Pn−1

Pn−1

����) (2)

Our multi-task learning objective is to simultaneously predict
these two quantities v[0,n] and vn using our input data; predicting
v[0,n] is our main task, while predicting vn is our auxiliary task.

4 DETAILED IMPLEMENTATIONS
Figure 2 summarizes the proposed HTML model which contains
four components: (1) token-level transformer encoder ; (2)multimedia
information fusion; (3) sentence-level transformer encoder; and (4)
multi-task prediction. Briefly, to begin with, text and audio features
are extracted from the raw text/audio call content: text tokens are
extracted from the text data and encoded into a vector using a
pre-trained language model, while a range of 27 different audio
features are extracted from the audio data using Praat [6], based
on the sentence-level audio clips, and in line with the approach
described by [46]. The resulting text and audio features are com-
bined by the information fusion layer and used as input for the
sentence-level transformer encoder to generate a new intermediate,
multimodal representation to act as the input representation for
the multi-task learner. The multi-task prediction layer generates
average and single-day volatility prediction based on the inputs
from the sentence-level transformer encoder. A more detailed im-
plement implementation description of each of these components
is presented in the following.
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Figure 2: Hierarchical Transformer-based Multi-task Learning

4.1 Token-level Transformer Encoder
The token-level transformer encoder consists of a Multi-Head Self-
Attention Mechanism, a Residual Connections and Layer Normal-
ization Layer, a Feed Forward Layer, and a Residual Connections
and Layer Normalization Layer [55]. The training of the encoder
involves two phases, namely pre-training and fine-tuning. The pre-
training phase can be considered as a self-supervised step and is per-
formed using the Whole Word Masking BERT (WWM-BERT)[14]
where WordPiece tokens belong to same word are masked jointly.
The WWM-BERT mitigates the drawbacks of the original imple-
mentation of BERT whereby it explicitly forces the model to predict
a whole word instead of WordPiece tokens in the training task.
The find-tuning phase gently adjusts the pre-trained model using
the output for our multi-task regression task. Since the pre-trained
model already encode much information about our language, the
fine-tuning phase takes substantially less time compared to training
the entire model from scratch. The steps in the two-phase training
are illustrated in Figure 3.

To describe the token-level transformer encoder in more detail,
we letWi =

(
w1
i ,w

2
i , ...,w

|Wi |
i

)
be a text-based sentence, where

|Wi | is the length of the sentenceWi andw
|Wi |
i is an artificial EOS

(end of sentence) token. The word embedding matrix associated

with sentenceWi is initialized as

Ei =
(
e1i , e

2
i , . . . , e

|ti |
i

)
where eji = e

(
w
j
i

)
+ pj .

(3)

Here e(·) maps each token to a d dimensional vector using the
WWM-BERT, and pj is the position embedding of the token w

j
i

with the same dimension d . Consequently, e ji ∈ Rd for all j. The
calculation of the position embeddings is performed in the same
manner as in [55]:

pj,2m = sin
(
j/100002m/d

)
(4)

pj,2m+1 = cos
(
j/100002m/d

)
(5)

where j is the position of the token andm is the dimension of the
embedding.

A sentence representation Ti ∈ Rdt of the sentenceWi is calcu-
lated by average pooling that operates over the second last layer of
network due to the experimental experience, where dt represents
the default dimensions of word embeddings.

4.2 Multimedia Information Fusion
The sentence representations and the corresponding audio features
are then combined. An earnings call document is represented as
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D(k ) =
(
s
(k )
1 , s

(k )
2 , . . . , s

(k )
M

)
where s(k )i =

(
(T

(k )
i ,A

(k )
i ) + Pi

)
.

(6)

Here T ki and Aki represent the sentence and audio features of sen-
tence i in document D(k ) ∈ RM×ds , and Pi ∈ R

M×ds denotes the
trainable sentence-level position embedding, and M is the maxi-
mum number of sentences in any document.

4.3 Sentence-level Transformer Encoder
The sentence-level transformer encoder extracts sentence-level
features for prediction. The architecture of this encoder is shown
in Figure 4. In particular, the architecture consists of two layer
normalization steps [1]:

H = LayerNorm
(
D(k ) +MultiHead

(
D(k )

))
(7)

L(k ) = LayerNorm(H +MLP(H )) (8)
where LayerNorm is layer normalization introduced in [1], MLP
denotes a two-layer feed-forward network with ReLU activation
function, and MultiHead denotes the multi-head attention mecha-
nism proposed in [55].

The multi-head attention applied to the documents {Dk } is
calculated as follows:

MultiHead = Concat (head1, . . . , headh)WO (9)

headi = Attention (Q,K ,V ) (10)

where Q = D(k )W
Q
i ,

K = D(k )W K
i ,

V = D(k )WV
i

(11)

whereWQ
i ,W

K
i ,W

V
i ∈ Rds×ds are weight metrics, and the at-

tention is computed as

Attention (Q,K ,V ) = softmax
(
QK⊤

√
ds

)
V (12)

for some input query, key and value matrices Q,K ,V ∈ RM×ds .
The h outputs from the attention calculations are concatenated and
transformed using a output weight matrixW o ∈ Rdsh×ds .

4.4 Multi-task Prediction Layer
The multi-task prediction layer consists of two separate single-
layer feed-forward networks. An average pooling is first applied
to the output of the sentence-level transformer encoder where the
resulting output is then fed into these two feed-forward networks.
The objective function is a weighted average of the loss of the two
prediction tasks:

F =
α
∑
i (ŷi − yi )

2 + (1 − α)
∑
j
(
ŷj − yj

)2
2n

(13)

where ŷi and ŷj are the predicted values for the main and auxiliary
tasks, respectively, and yj denote the corresponding true volatility.
The weight α ∈ [0, 1] controls the importance of the auxiliary task
and is tuned using the validation set. We use Adam [31] as the

optimizer and adopt the trick of decay learning-rate with the steps
increase to train our model until converge.

5 EVALUATION
We describe the dataset for our application and several baselines
for the task of stock volatility prediction. A metric to assess and
compare the performance of each method is also introduced.

5.1 Dataset
The dataset used in this paper is a public S&P 500 Earning Con-
ference Calls dataset used by [46]1. It contains the audio records
and the corresponding text transcripts from earnings calls for 500
large public companies traded on American stock exchanges (S&P
500) during 2017. There are 2,243 earnings conference calls in 2017
in the raw dataset. However, a large proportion of raw data was
discarded because the audio-text alignment is very noisy and is
prone to errors. So, there are 576 unique training instances (earn-
ings calls) in which the audio records are sufficiently closely aligned
with the corresponding text transcripts in total; the remainder of
instances are removed due to a lack of alignment between the audio
and text content. These 576 earning calls (instances) correspond to
88,829 aligned sentences (text and audio). In addition to this call
data we downloaded the dividend-adjusted closing prices needed
for volatility prediction from Yahoo Finance 2. Also, the pre-trained
WWW-BERTmodel 3 is used to form text representation for each in-
put token, and consequently a sentence representation is obtained.

5.2 Baselines
We compare our approach to volatility prediction to a number of
important baselines, chosen to reflect the range of approaches that
have been applied to the volatility forecasting task, and also includ-
ing the current state-of-the-art. These baselines can be grouped de-
pending on whether they use historical pricing data [20, 29, 39, 57]
(classical approaches), more recent uses of textual data [54, 64], or
even more recent uses of multi-modal data [45, 46]. In each case
we outline several different baselines, which, to the best of our
knowledge, collectively offer the best available volatility prediction
methods at the time of writing.

5.2.1 Price-based baselines. : The following approaches all rely on
historical pricing data only, as the basis of volatility prediction:

(1) Classical Methods: Its include the GARCH model (an clas-
sical auto-regressive volatility prediction model) [19] and its
variants [29]. These are among themost common approaches
for volatility prediction. They are designed for short term
volatility prediction, and tend to be less effective when it
comes to average (n-day) volatility prediction. Therefore, the
more effective prediction results corresponding to the ARCH
are reported here.

(2) LSTM [20]: Long short-termmemory networks (LSTMs) are
widely used in financial time series prediction. For volatility
prediction, we choose a simple LSTM as a benchmark using
the preceding, optimal, n-day historical volatility.

1Earning call dataset: https://github.com/GeminiLn/EarningsCall_Dataset
2https://finance.yahoo.com/
3https://github.com/google-research/bert

https://github.com/GeminiLn/EarningsCall_Dataset
https://finance.yahoo.com/
https://github.com/google-research/bert
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(3) LSTM+ATT [57]:By incorporating an attentionmechanism
with an LSTMwe can build a prediction model that can focus
on specific period of volatility in the training data, rather
than assuming uniform historical data.

(4) MT-LSTM+ATT [39]: This multi-task variation combines
average n-day volatility (the primary prediction task) with
single-day volatility prediction using attention-based LSTMs
as the underlying learners.

5.2.2 Text-based baselines. : The following text-based approaches
all rely on earnings call transcripts for volatility prediction. The
baselines themselves reflect recent significant progress in this task
and include the current state-of-the-art in volatility prediction tasks.

(1) SVR+RBF(TF-IDF) [54]: Following previous studies [54],
Support Vector Regression (SVR) with a Radial Basis Func-
tion (RBF) kernel is adapted for stock volatility prediction,
representing each instance as a vector of TF-IDF scores (Term
Frequency-Inverse Document Frequency [59]) for each term

in an earnings call transcript. The TF-IDF of a given term t
is calculated as

log
(
1 + tcdi (t)

)
∥di ∥

log
(
1 +

|di |

d f (t)

)
where tcdi (t) is the number of occurrences of term t in tran-
script i, ∥di ∥ denotes the Euclidean norm of the termweights
of the transcript, and |di | is the number of the terms in the
transcript.

(2) SVR+RBF(Glove): This baseline again uses SVR+RBF but
with each transcript term mapped to a pre-trained Glove
300-dimensional embedding [44] so that the transcript is
represented as a weighted average of the embeddings. This
intuition is that this provides a richer transcript representa-
tion than using the raw terms.

(3) HAN (Glove) [64]: For this baseline, we use a Hierarchical
Attention Network with two levels of attention mechanisms,
which are applied to word and sentence levels. Each word in
a sentence is first converted to a word embedding using the
pre-trained Glove 300-dimensional embeddings. Then each
sentence, with its embedded words, is input into a Bi-GRU
encoder [3, 11], while another Bi-GRU encoder is used to
represent each document as a sequence of sentences. The
document representation is then passed to the final regres-
sion layer for predictions.

5.2.3 Multimodal baselines: These baseline all combine transcript
text and audio data and the MDRM version represents the current
state-of-the-art in volatility prediction.

(1) SVR (Glove+Audio) [46]: Both text and audio features are
used as input features for a SVR in which both types of input
are fused using a simple shallow model.

(2) bc-LSTM (Glove+Audio) [45]:We use a bi-directional con-
textual LSTM, proposed by [45], to extract context-dependent



HTML: Hierarchical Transformer-based Multi-task Learning for Volatility Prediction WWW ’20, April 20–24, 2020, Taipei, Taiwan

multi-modal utterance features, including text features, au-
dio features, and video features.

(3) MDRM[46]:This recentmulti-modal deep regressionmodel
is the current state-of-the-art in volatility prediction.

The overfitting problem of audio-only model is reported in the
previous work [46]. For this reason, different from the previous
work, we discuss our model’s performance in two scenarios: text-
only and text+audio.

Table 1: Parameter Settings

Parameters Values

Number of layers 2
Number of heads 2
Learning rate 2e-5
Batch size 4

Max sequence length 520
Dropout probability 0.5

5.3 Methodology
To facilitate a direct comparison with the current state-of-the-
art (the MDRM based on [46]) we follow the evaluation carried
out by [46] by splitting our dataset into mutually exclusive train-
ing/validation/testing sets in the ratio 7:1:2, and the 7:1:2 split refers
to the earning calls. We sort the dataset (i.e. earning calls) in chrono-
logical order because the future data cannot be used for prediction.
For each baseline (plus our HTML approach), each model is trained
using the training set.

In line with best practice, model hyper-parameters are tuned
using the validation set. In particular, themaximum sequence length
is set as 520 following [46], and for the token-level model, we use
the default settings for the hyper-parameters of WWM-BERT to
encode each token. Based on that, we develop an agile transformer
in the sentence-level to reduce the training and prediction time. We
use a grid search to determine the optimal parameters and select the
learning rate λ for Adam among {1e-5, 2e-5, 5e-5, 1e-4, 2e-4, 5e-4},
the depth of transformer layers h ∈ {1, 2, 3, 4}, the number of multi-
head attentionm ∈ {1, 2, 3, 4}, and the batch size b ∈ {4, 8, 16, 32}.
The optimal hyper-parameters are shared among all settings except
the trade-off parameter α between two tasks. The different optimal
parameters α are tuned on the validation set for different n − days
volatility predictions. Each of these tuned models is then evaluated
based on its ability to predict average n-day volatility using the
test set, for n = 3, 7, 15, 30. The resulting optimal hyperparameter
values used are reported in Table 1.

The resulting predictions are compared to the actual volatility
values to compute a mean squared error; see Equation 14, where ŷi
is the predicted value, yi denotes the actual volatility.

MSE =

∑
i (ŷi − yi )

2

n
(14)

6 RESULTS AND DISCUSSION
The results of this evaluation are presented in Table 2, for each of
the baselines and a number of variations of our HTML model, for

3, 7, 15, and 30-day time-periods. It should be clear that significant
prediction benefits accrue to the HTML model. The HTML model
achieves the highest prediction performance (lowest MSE values)
for each of the target time-periods. In particular, the text-only and
text+audio versions of HTML generate predictions with substan-
tially lower errors compared to the corresponding versions of the
current state-of-the-art, MDRM alternative. These error improve-
ments relative to MDRM are substantial significant, varying with
the time-period as follows: 3-days (+38.4%), 7-days (+16.9%), 15-days
(+49.0%), and 30-days(+38.7%). Improvements of this scale, relative
to the state-of-the-art, are likely to translate into substantial practi-
cal benefits and suggest that this new HTML approach stands as a
new performance benchmark for volatility forecasting.

In addition to such overall measures of performance, however,
we are also interested in better understanding the different rela-
tive contributions, if any, that the design decision of the HTML
model make, when it comes to prediction performance. Thus, in the
following subsections we consider a number of related evaluation
questions to better the relative contributions of data sources and
model components.

6.1 Comparing Price-based Methods with
Alternative Methods

Table 2 shows how both text-based and multimodal approaches
consistently outperform methods that are purely based on histor-
ical pricing, for both short-term (n = 3) and long-term (n = 30)
volatility prediction. Excluding the HTML model, the performance
of price-based methods and other methods offer comparable for
medium-term (n = 7, 15) volatility prediction performance. And, in
the case of HTML, its prediction performance always exceeds that
offered by pricing-based methods, regardless of n. This provides
strong evidence in support of the idea that text and audio features
can improve volatility prediction.

6.2 On the Utility of Audio Features
Previous research [46] has demonstrated the benefits of combining
text with audio data, compared to text-only features, in volatility
prediction; [46] reported significant differences, based on a one-
tailed t-test, for n=3/n=7 p ≤ 0.001 and for n=15 p ≤ 0.01). For
HTML, the benefits of using multimodel learning are statistically
significant for n=3 only, however (p ≤ 0.01). HTML delivers its
most accurate short-term predictions using text+audio, but its most
accurate long-term predictions come from the text-only version.
This may hint that short-term volatility is more greatly influenced
by the vocal cues contained within audio features, although further
research is required, as short-term volatility may also be impacted
opportunistic effects such as so-called post earnings announcement
drift (PEAD) [5].

6.3 On the Benefits of the Hierarchical
Transformer Architecture

We explore the benefits of attentionmechanisms for price-based and
text-based models separately. For technical analysis, the attention
mechanism based on LSTM achieves some minor improvement in
almost all of the settings, excluding n=7. While in the text-based
methods, if we adapt a hierarchical attention network (HAN) with
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Table 2: The average n-day volatility prediction errors for our approach (HTML) and the various baselines, including the
MDRM state-of-the-art. The MSE in bold indicates the best MSE across all approaches, while those in italics indicate the stae-
of-the-art MSEs.

Price-based Methods n=3 n=7 n=15 n=30

Linear Regression 1.710 0.526 0.330 0.284
LSTM 1.970 0.459 0.320 0.235
LSTM+ATT 1.852 0.470 0.308 0.231
MTLSTM+ATT 1.983 0.435 0.304 0.233
Text-based Methods n=3 n=7 n=15 n=30

SVR+RBF(TF-IDF) 1.695 0.498 0.342 0.249
SVR+RBF(Glove) 1.667 0.549 0.345 0.275
HAN(Glove) 1.426 0.461 0.308 0.198

Multimodal Methods n=3 n=7 n=15 n=30

SVR(Glove+Audio) Text+Audio 1.722 0.501 0.307 0.233
bc-LSTM(Glove+Audio)[45] Text+Audio 1.418 0.436 0.304 0.219

MDRM [46]
Text Only 1.431 0.439 0.309 0.219
Audio Only 1.412 0.440 0.315 0.224
Text+Audio 1.371 0.420 0.300 0.217

HTML (Ours) Text Only 1.175 0.372 0.153 0.133
Text+Audio 0.845 0.349 0.251 0.158

a bi-directional GRU model, we note a distinct improvement. It is
noteworthy that HAN outperforms the state-of-the-art multimodal
results for n=30. This finding provides further evidence in support of
the idea that audio features are unlikely to contribute significantly
to longer term volatility predictions.

We also compare the results obtained from the attention model
used in HAN and our Hierarchical Transformer, which contains
self-attention and mutual-head attention, with text only data. The
performance of our model is stronger on all tasks, suggesting im-
provements due to the progressive architecture of Hierarchical
Transformer and the use of pre-trained word embeddings.

Regarding the embeddings used, the results of an ablation study
on the different embeddings used by HTSL and HTML approaches
used in this work are presented in Table 3. As might be expected,
WWM-BERT has a beneficial effect on each prediction task com-
pared to Glove; although adding audio features to the Glove em-
beddings offers similar performance benefits.

6.4 Single-Task vs Multi-Task Approaches
Also in Table 3 we can see how the multi-task approach tends to
offer improved performance compared to the single-task approach.
On a like-for-like basis, most of the multi-task variations in Table 3
present that we superior prediction performance when compared
to the corresponding single-task variation, especially for long-term
prediction tasks.

We further explore how the auxiliary (single-day prediction)
task affects prediction performance. The influence of the auxiliary
weight α is important, because it determines relative weight of
each task during learning. The validation MSE results, by varying
α , are presented in Figure 5. Each individual graph shows the n-
day (main task) and single-day (auxiliary task) MSE for a different

Table 3: Ablation studies on the multi-task learning and
embeddings. HTSL and HTML are short for Hierarchical
Transformer-based Single-task Learning and Hierarchical
Transformer-based Multi-Task Learning respectively

Model Embeddings n=3 n=7 n=15 n=30

HTSL

Glove 1.558 0.469 0.291 0.181
Glove+Audio 1.313 0.389 0.330 0.238
WWM-BERT 1.344 0.363 0.271 0.162
WWM-BERT+Audio 1.087 0.432 0.308 0.181

HTML

Glove 1.574 0.474 0.276 0.164
Glove+Audio 1.278 0.370 0.282 0.201
WWM-BERT 1.175 0.372 0.153 0.133
WWM-BERT+Audio 0.845 0.349 0.251 0.158

value of n and a range of values for α , and for text-only and multi-
modal variations. Using text-only data the optimal value for alpha
(minimum MSE on the main task) varies in the range 0.5 to 0.8 for
different values of n, whereas for multi-modal data it tends to be
lower, in the range 0.4 to 0.6, for varying n. By tuning α during
the validation stage we are effectively trading-off n-day prediction
performance and single-day prediction performance and overall
we can see that n-day performance can be optimised by tuning in
this way.

7 CONCLUSIONS
Predicting the historical volatility of publicly traded companies is
an important financial analysis task and considerable research effort
in the past has been devoted to producing models that are capable
of predicting pricing volatility for different time horizons. Recent
advances in machine learning means that researcher attention has
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Figure 5: Validation MSE as a result of varying α . Left and right y-axis represent the validation MSE of primary task and
auxiliary task respectively.

moved from conventional time-series prediction approaches, based
on historical pricing data, to more sophisticated methods that in-
corporate alternative sources of (often unstructured) data such as
text reports or social media.

In this paper we have proposed a novel hierarchical, multi-task,
transformer learning model for volatility prediction, based on the
text and/or audio of earning calls. The model builds on very recent
work by [46] and delivers substantial performance improvements,
for short and long-term volatility prediction, providing a new perfor-
mance benchmark for this task. Moreover, our evaluation includes
a detailed study of a variety of experimental conditions, to better

understand the relative contributions of different aspects of the
proposed model to prediction performance.

The utility of audio data, and vocal features, in this important
financial prediction task, suggests there exists a significant oppor-
tunity to explore the use of audio features in a range of related or
complementary tasks (e.g. fraud detection, asset pricing, stock rec-
ommendation etc.), where such data is readily available alongside
more traditional forms of financial data.
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