
Unknown Fault Tolerant Control using Deep Reinforcement Learning: A blended
control approach

Yves Sohège1 ∗ , Marcos Quiñones-Grueiro 2 , Gregory Provan3

1,3Insight-Centre for Data Analytics, University College Cork, Cork, Ireland
2Vanderbilt University, Tennessee, USA

yves.sohege@insight-centre.org, marcosqg88@gmail.com, g.provan@cs.ucc.ie

Abstract

It is impossible to pre-define a controller for ev-
ery fault an autonomous system can experience as
some faults are unknown at design time. Current
fault tolerant control (FTC) architectures switch
control to a pre-defined fault controller when a
known fault is identified. Blended control imple-
ments a controller that is composed of multiple in-
dividual controllers instead of discretely switching
between them. In this article we present a novel
fault tolerant control architecture based on blended
control that uses a high-level deep learning agent
to learn the optimal blending proportions between
low-level controllers for unknown faults. Faults
are abstracted to the effect they have on the perfor-
mance of a task while removing the inherent fault
identification delays experienced by existing FTC
architectures. The presented architecture is vali-
dated on a quadcopter trajectory tracking task and
trained to tolerate abrupt rotor loss of effectiveness.
We compare our approach against a switched ar-
chitecture with the same underlying controllers and
show its ability to learn unknown fault tolerance.

1 Introduction
Autonomous systems have been a major focus for the fault
tolerant control community in recent years. For the applica-
tion of autonomy to large scale systems they need to tolerate
unknown faults. Fault tolerance can be defined as continuing
mission performance under any fault conditions, known or
unknown. Traditional switched fault tolerant control (FTC)
systems rely on prior knowledge of the effects a fault has on
the system dynamics for the fault detection and isolation unit
(FDI) to identify the fault as well as a controller to operate
under these conditions [Blanke et al., 2016]. After identifi-
cation Control is switched to the pre-defined fault controller.
This fundamentally does not extend to unknown faults for two
reasons:

1. Identification relies on prior knowledge of the effect a
fault has on the system dynamics.

∗Contact Author

2. Fault controllers are designed to operate under known
fault conditions only.

Identifying the effect a fault has on the system dynamics
is complex and has an inherent time delay. For highly unsta-
ble systems, such as quadcopters, such a delay can be catas-
trophic. Blended Control is a variation of switching control
that implements a control that is composed of multiple low-
level controllers simultaneously instead of discretely switch-
ing between them.

In this article we present a novel hierarchical FTC frame-
work based on blended control and a deep learning high-level
controller that addresses the mentioned problems. The FDI
unit and control switching function are replaced by a deep
learning agent, specifically a deep deterministic policy gradi-
ent (DDPG) agent. This is an abstracted approach to learn
the effect of a fault on the task performance rather than the
system dynamics. Degrading task performance due to any
faults is optimized through changing the blend weight vector
which removes the need for prior knowledge of a fault and
addresses problem 1. The low-level controllers are designed
based on the type of reaction to a fault instead of for pre-
defined fault conditions while providing similar control re-
sponses under nominal conditions. This allows for synthesis
of new controllers for unknown faults by adapting the blend
weight vector and addresses problem 2. The presented archi-
tecture provides a novel integration of existing controllers to
deep learning FTC and is validated on a Quadcopter trajec-
tory tracking task with abrupt rotor loss of effectiveness. We
show the presented architecture is able to track a given tra-
jectory closer than a switched architecture based on the same
low-level controllers under rotor loss of effectiveness of 50%
while also generating a improved control signal.

Our contributions are as follows:
• We present a novel hierarchical fault tolerant control ar-

chitecture with the ability to learn unknown fault tol-
erance through blended control and a high-level deep
learning agent.
• The architecture is validated on a quadcopter trajectory

tracking task under unknown rotor loss of effectiveness
faults. The trained controller shows robustness to the
trained faults and exhibits less oscillations around the
reference signal than the low-level controllers.

The remainder of this article is structured as follows: Sec-

Figure 1: Deep Learning Blended Control architecture showing
the 3 main parts: Low-level controllers, High-Level Controller and
Blending Function.

tion 2 gives a detailed overview of the presented architecture.
We compare our architecture to current state-of-the-art FTC
architectures and applications of deep learning for control in
Section 3. We discuss deep reinforcement learning and its
application to control in Section 4. The implementation and
training on a quadcopter simulation is given in Section 5 fol-
lowed by experimental validation in Section 6.

2 Deep Reinforcement Learning Blended
Control

We will firstly give a detailed overview of the presented archi-
tecture, referred to as Deep Reinforcement Learning Blended
Control (DRLBC), to improve the overall clarity of the arti-
cle. An architecture diagram of DRLBC can be seen in Figure
1. The framework can be broken down into three parts which
will be discussed in detail:

1. Low-Level Controllers

2. High-Level Controller

3. Blending Function

2.1 Low-Level Controllers
In hierarchical control architectures the low-level controllers
generate the control signals that are directly applied to the
systems actuators (motors, valves, etc). Several types of well
known controllers exist for system control such as Propor-
tional Integral Derivative (PID), Model-Preditive Controllers
(MPC) or Linear Quadratic Regulators (LQR) to name a few.
In this article we will restrict the low-level controllers to PID
controllers which are an industry standard way of controlling
automatic systems but the presented framework works with
any low-level controllers. Traditionally an optimal controller
is designed offline for a system model under predefined op-
erating conditions. Fault tolerance is achieved through re-
dundant controllers designed for known fault conditions. The

Figure 2: Quadcopter attitude controller outputs for trajectory track-
ing under rotor fault. Y-Axis represents Reference and Actual po-
sition as well as controller response in red, Aggressive (Top) and
Smooth (Bottom).

number of faults a system is tolerant for depends on the num-
ber of low-level controllers predefined at design time. In this
article, the set of low-level controllers are not designed for
specific operating conditions but based on the type of reaction
to a disturbance or fault and are denoted Ω = {ω1, · · · , ωN}.
Figure 2 shows the reaction of two differently tuned PID con-
trollers to a fault. Gain parameters for these can be found in
Table 1. Higher gain parameters cause the controller to have
a more aggressive response to a fault and performs better for
aggressive flight maneuvers (top) while smaller gain parame-
ters have a smoother response which results in more precise
control but slower stabilization after faults (bottom). The blue
line representing the actual state variable that is manipulated
stabilizes on the black reference line for both controllers. The
controllers reactions shown in Figure 2 are used in the quad-
copter simulation experiments and will be elaborated on fur-
ther in Section 5.1.

2.2 High-Level Controller

In traditional switched architectures the high-level controller
contains the FDI unit which identifies the effect of faults on
the system. The high-level controller selects which of the
low-level controllers is active at any time and provides fault
tolerance capabilities by switching control to the predefined
controller once a known fault is identified. In the presented
architecture the high-level controller is implemented with a
deep neural network instead of a set of state observers that
identify faults. In this article we will use a Deep Determin-
istic Policy Gradient network [Lillicrap et al., 2015] which
will be described in more detail in Section 4. The low-level
controller outputs, Ω , and a subset of state variables repre-
senting the performance on a task are used as an input for
the high-level controller. The objective is to learn the opti-
mal blend of low-level controllers to maximise the systems
performance on a task. Faults that impact the performance
of the system can be mitigated generically in real time with-
out having to define specific fault observers. The output of
the high-level controller is defined as the blend weight vector
ϕ = {ϕ1, · · · , ϕN} that specifies the weight of each low-
level controllers in the blended control signal ~ω applied to the
system.

2.3 Blending Function
The blending function takes as inputs the low-level con-
troller outputs {ω1, · · · , ωN} and the blend weight vector
{ϕ1, · · · , ϕN} and outputs a blended control signal ~ω. For-
mally blended control can be defined as follow:

Definition 1 (Blended Control) Given a collection of con-
trollers Ω = {ω1, · · · , ωN} and a blend weight vector ϕ =
{ϕ1, · · · , ϕN}, blended control is a weighted combination
~ω =

∑
i ϕiωi such that: (1) ∀i, ωi ∈ Ω, 0 ≤ ϕi ≤ 1, and

(2)
∑
i ϕi = 1

The two constraints imposed on the blend weight vector
ensure that ~ω is bound by the low-level controller outputs.
Further, if the low-level controllers output the same control
signal, blending to any proportions will have no effect. In
Figure 1 these constraints are shown in the blending function
block for clarity but can be imposed on the high-level con-
troller outputs for a simpler implementation.

3 Running Example & Related Work
We will use the quadcopter with abrupt rotor loss of effective-
ness (LOE) as a running example for the remainder of this
article. Quadcopters are unmanned aerial vehicles that use
four propellers to maneuver and have gained increased atten-
tion in the research community in recent years . These vehi-
cles have fewer actuators than degrees of freedom, and hence
are called under-actuated: only four actuators (propellers) are
used to control six variables, the coordinates x, y, and z, and
the roll, pitch, and yaw angles of the quadcopter, denoted φ, θ,
and ψ, respectively. Hierarchical PID-based control is a stan-
dard way to control quadcopters. The dynamical equations
of a quadcopter are complex, due to the highly coupled state-
space. Due to space limitations, we give a brief summary of
quadrotor dynamics and details of how rotor faults are repre-
sented, and refer the reader to [Özbek et al., 2016] for details.

We define the dynamics of the quadcopter in the non-linear
state space form

ẋ = f(x) + g(x)(1− ς)u(t), (1)

where x = [x ẋ y ẏ z ż φ φ̇ θ θ̇ ψ ψ̇]T is the state vector,
control input u(t) = [U1 U2 U3 U4]T = %(υ1 υ2 υ3 υ4),
% is a non-linear function in the angular velocity of motor i,
and we denote a multiplicative fault model with parameter
0 ≤ ςi ≤ 1 for i = 1, ..., 4, where ςi = 0 corresponds to
nominal function and ςi = 1 to total failure.

Quadcopters have been shown to be able to maintain flight
even after the complete loss of one or more rotors [Mueller
and D’Andrea, 2014]. Several applications of deep learn-
ing for quadcopters exist which mostly focus on learning the
direct control mapping of state space to motor commands
[Hwangbo et al., 2017; Greatwood and Richards, 2019;
Koch et al., 2019]. This usually requires large amount of
training data and complex fine tuning of the reward functions
to accurately represent the desired behaviour.

The application of deep learning for FTC of a quadcopter
has been achieved by learning a complementary controller
that adjusts the nominal controller output during a rotor fault
[Fei et al., 2019]. The success of this approach compared

to other adaptive control strategies is attributed to the con-
tinuous output of the neural network and removal of the FDI
unit to identify when a correction to the nominal controller is
needed.

P I D
Aggressive 12 5 5

Smooth 5 1.1 3

Table 1: PID parameters for aggressive and smooth reactions to
faults from a quadcopter simulation.

A large amount of work has been done on FTC through hi-
erarchical control architectures [Blanke et al., 2016; Lunze,
2016]. An extension to the traditional switched architectures
is blended control. Blended control has been proven to be safe
as the applied control signal will always be bound by the un-
derlying controllers and will at worst perform like a switched
architecture [Kuipers and Ioannou, 2010]. Blended control
has been successfully applied for FTC of a quadcopter with
partial rotor failure in [Büyükkabasakal et al., 2017] but has
received little success outside of this due to the complexity of
generating adequate blending weights.

3.1 Comparison to DRLBC
We contrast the presented DRLBC architecture to current
state of the art approaches. The deep learning algorithm
is applied to an abstracted high-level task while relying on
existing control mechanism to control the vehicle. This re-
duces the overall complexity of the learning task as nominal
system control is already established which usually takes a
large number of learning iterations and fine tuning an accu-
rate reward function to achieve. The direct mapping of state
space to motor commands is a highly complex function. Ev-
ery additional input to the deep learning algorithm increases
the size of the space that is explored which is a reason for
the long convergence times experienced by the application of
deep learning to control tasks. DRLBC only uses a subset
of the state space variables as an input which reduces this
space drastically. If the underlying controllers provide safe
responses with varying performance on a task, DRLBC guar-
antees a safe exploration space for the agent during training
as any blend weight vector used will create a control signal
bound by the safe controller outputs.

The presented architecture is able to generically identify
degrading performance since no fault specific observers are
used in the high-level controller. Faults have an effect on the
performance an autonomous system is able to achieve on its
task. For example abrupt rotor LOE on a quadcopter will
cause overall instability and reduce the trajectory tracking ac-
curacy the quadcopter is able to achieve. By choosing inputs
for the high-level controller that represent the performance
on a given task the deep learning agent is able to identify
when system performance degrades and learns to optimize
this through the selection of an adequate blend weight vector.
For a trajectory tracking task such a performance measure
could be the current trajectory tracking error as it captures
the overall task the system is executing. To be able to distin-
guish the effects different faults have on the overall system

we extend the set of high-level controller inputs with a subset
of the state variables that represent the changing conditions
of the system. The angular state of a quadcopter is heavily
effected by rotor faults. This would be an adequate input for
the high-level controller to learn the effect a rotor fault has on
the system performance without specific observers monitor-
ing these states. This abstraction allows the system to learn
how to maintain control during unknown faults or even when
the fault is not identifiable from any state variables.

With specifically tuned fault controllers blended control is
mostly limited to the correction of partial faults. The calcula-
tions of the correct blending weights for partial fault control
is complex as the FDI observers need to be able to identify the
magnitude of the fault and then calculate the adequate blend
weights. DRLBC is not limited to partial fault tolerance as the
low-level controllers are not tuned to be fault specific. Blend-
ing low-level controllers based on the type of control that is
required allows for the deep learning agent to synthesise a
new controller when system performance degrades due to any
fault. The complexity of defining the blending weights is left
to the deep learning agent. Theoretically this framework can
learn fault tolerance on-line given an adequate training envi-
ronment but this is beyond the scope of this article.

4 Deep Reinforcement Learning (DRL)
The standard setup for reinforcement learning is a decision
maker called agent that interacts with an unknown environ-
ment E in discrete time steps for achieving a goal. The infor-
mation exchanged between the agent and its environment is
reduced to three signals: one signal to represent the choices
made by the agent at ∈ <N (the actions), one signal to rep-
resent the basis on which the choices are made xt ∈ <M (the
observations), and one scalar signal that represents the agent’s
goal rt ∈ < (the reward) [Sutton and Barto, 1998]. Here,
we assumed the environment is partially-observed (xt = st
where st is the state vector).

The agent makes a decision based on a policy π that
maps the states to a probability distribution over the actions
π : S → P(A). The environment is modeled as a Markov
decision process defined by a four tuple: {S ,A,T ,R}. The
transition function T : S × A × S → [0, 1] allows to es-
timate the probability of reaching state s′ at t + 1 given
that action a ∈ A was chosen in state s ∈ S at time t,
p(s′|s, a) = Pr{st+1 = s′|st = s, at = a}. The reward
function estimates the immediate reward R ∼ r(s, a) ob-
tained from choosing action a in state s.

The goal of the agent is to learn a policy that maximizes
the future discounted reward Rt =

∑T
i=t γ

i−tr(si, ai) over a
time period T without explicit knowledge about the shape of
the reward or the dynamics of the environment. Therefore,
solving a reinforcement learning problem means, roughly,
finding the policy function that maximizes the expected re-
ward over the long run. One approach to find the best policy
is to derive it from the so-called action-value function that ap-
proximates the expected reward for any state and action pair.
Hence, the optimal action-value function Q must be learned

Q∗(st, at) = max
π

Eri≥t,si>t,ai>t∼π[Rt|st, at] (2)

Deep neural networks have been successfully used as
function approximators for learning the optimal action-value
function. The Deep Q Network (DQN) algorithm was first
proposed to deal with continuous state spaces [Mnih et al.,
2015]. However, DQN can only handle low-dimensional
action spaces mainly because of the curse of dimensional-
ity. Then, Lillicrap et al. (2015) proposed an off-policy
actor-critic algorithm using deep function approximators that
can learn policies in high-dimensional, continuous action
spaces [Lillicrap et al., 2015]. Their algorithm, called Deep
Deterministic Policy Gradient (DDPG), promotes stability
and efficiency by training the network off-policy with sam-
ples from a replay buffer and using a targetQ network to give
consistent targets during temporal difference backups.

Learning a set of deep neural networks for direct fault-
tolerant control of a quadrotor is a complex problem. The
two main challenges are the design of an appropriate re-
ward function and the time-consuming exploration process
required given the high-dimensional action and observation
space required. We leave a deeper investigation into these
challenges for future work. The goal of using reinforcement
learning in this work is to design an agent that maps from
an observation vector to the optimal blended weight vector
depending on the system state.

5 Quadcopter Implementation and Training
Hierarchical PID-based control is a standard way to achieve
quadcopter trajectory tracking. A trajectory is a temporally-
indexed set of coordinates in 2D or 3D, denoted ζ(k). We
denote the reference (desired) trajectory as ζR(k), and the
executed trajectory as ζ̃(k). The goal of a trajectory tracking
task can be defined as minimizing the Trajectory Loss.

Definition 2 (Total Trajectory Loss) We can represent the
total trajectory loss as a difference function between refer-
ence and executed trajectories, i.e., L0:T =

∑T
k=0 ‖ ζR(k)−

ζ̃(k) ‖ for a trajectory over time points k = 0, · · · , T .

For simplicity we will focus on 2D (x, y) trajectory track-
ing. Figure 3 shows the full architecture diagram imple-
mented on the quadcopter which will be discussed similarly
to Section 2, omitting the blending function details as they do
not change.

5.1 Low-Level Controllers
A PID controller for each x and y axis generates the desired
Roll (φ) and Pitch (θ) reference angular state needed for the
quadcopters to execute the desired trajectory. The low-level
roll and pitch controllers translate the desired angular states
into motor throttle commands which are applied to the vehi-
cle. We disregard ψ, the rotational state of the quadcopter, as
it is not relevant for the 2D position. By changing the gain
parameters of the roll and pitch PID controllers we change
how the quadcopter responds to a divergence of the reference
trajectory. To achieve a blended control architecture at least
one extra controller is needed for each of the angular states
for which the control is to be blended. As previously men-
tioned an aggressive and a smooth controller, referred to as
C1 and C2 respectively, are used and for simplicity both roll

Figure 3: Quadcopter Deep Reinforcement Learning Blended Control architecture.

and pitch use the same controller tuning. Table 1 show the
detailed gain parameters used and Figure 2 shows the differ-
ence in response to an abrupt change in position due to some
unknown fault.

5.2 High-Level Controller
A standard actor-critic DDPG network structure is used to
generate the blend weight vector. Both actor and critic take
in the same observation vector which we define as:

[φ θ δX δY C1φ C2φ C1θ C2θ]

where φ and θ are the current angular states, δX and δY
represent the current trajectory tracking error and the remain-
der the low-level controller outputs of C1 and C2 for φ and θ
respectively.

Since there are only two controllers for each control axis
being blended and the second blended control constraint from
Definition 1 enforces

∑
i ϕi = 1, the actor output can be

defined simply as : [ϕφ ϕθ]. The full blend weight vector
ϕ can then be calculated as :

[ϕφ (1− ϕφ) ϕθ (1− ϕθ)]
This reduces the neural network output to one variable per

control axis compared to current state of the art approaches
learning the direct control mapping of all control signals
needed to control the system. We give a brief overview of
the network architecture but details are omitted due to space
restrictions. The standard DDPG network was used without
special modifications. The actor network is defined by three
fully connected layers separated by ReLU (Rectified Linear
Unit) layers. Finally a hyperbolic tangent layer with output
size 2 is used to naturally enforce the blended control con-
straints, bounding ϕφ and ϕθ between 0 and 1. The critic
network has two paths, one for the observation vector and

the other for the actor output which are joined after two and
one fully connected layer respectively for each path. All fully
connected layer contains 32 neurons in this implementation.

5.3 Training Details
For training we use a simple sinusoidal reference path of 10
meters for the X and Y position executed over 15 seconds.
We define the performance of the quadcopter on the trajec-
tory tracking task as the average trajectory loss over the 15s
simulation. The performance of C1 and C2 under nominal
conditions is 48.88cm and 48.86cm respectively. The quad-
copter was trained over 3000 episodes and we define other
relevant training parameters used in Table 2.

Parameter Value
Discount factor 0.99
Initial learning rate of the critic 0.01
Initial learning rate of the actor 0.025
Batch size 5
Replay buffer size 5
Training steps of an episode 150
Number of episodes 3000

Table 2: Training parameters used

Rotor Fault Generation
We use abrupt rotor loss of effectiveness as the fault to learn
which has briefly been defined in the quadcopter model in
Equation 1. For the purposes of training we extend the defi-
nition of the rotor faults to a triplet:

[ς γ t]

where ς defines fault magnitude, γ discretely selects the
rotor and t the time of occurrence. We define the sampling

Figure 4: Average reward obtained over 3000 episodes shown
against nominal tracking performance.

interval 0.2 < ς < 0.5 indicating a loss of angular rotor ve-
locity of 20-50%. Each fault parameter is sampled randomly
to provide a varied set of training data and the probability of
a fault occurring at time t is set to 5%. Each fault is applied
for 0.1s which is one time step.

Reward function
Nominal control is already established through the low-level
controllers and the objective of the agent is to learn to toler-
ate any fault by maintaining nominal task performance. The
total trajectory loss over the training path under nominal con-
ditions, definedLN0:T , makes for a natural baseline to compare
the performance achieved under fault conditions against.

Definition 3 (Trajectory Tracking Reward) Given total
trajectory loss under faults LF0:T , the obtained reward is
defined as:

R0:T = LN0:T − LF0:T
for time points k = 0, · · · , T .

whereLN0:T is the average total trajectory loss of C1 and C2
under nominal conditions. The reward function is defined in-
dependently of the faults applied to the system which make it
extensible for any fault that effects the trajectory, for example
wind disturbances, but this is beyond the scope of this article.
The reward function allows for a positive and negative re-
wards indicating improved or degraded system performance
which training should maximise.

5.4 Training Results
Figure 4 shows the average reward obtained by the agent over
3000 episodes calculated over 100 training episodes. This
figure shows that the reward stabilizes to a positive value in-
dicating that the agent performed better than nominal control.
We partially attribute this to the way the reward is calculated.
During rotor faults the quadcopter can actually move closer
to the reference trajectory due to the steady state error experi-
enced during tracking. This has a positive effect on the overall
trajectory loss. Additional factors for this are explored during
the experiments section. Since the average reward is strictly
positive after 1500 episodes we reason the agent has learned
to stabilize the fault correctly without having a dedicated con-
troller predefined for the rotor fault condition.

6 Experiments
We compare the trained blended control framework against
a traditional switched architecture based on the same low-
level controllers. We set C2 as the nominal controller as it
performs slightly better under nominal operating conditions
and smooth control is more desirable. After experimentation
we found that C1 was more robust to rotor faults which make
it an adequate fault controller in a switched architecture. A
switch is triggered when the trajectory deviation is more than
2m, since the steady state error is around 1.8m this gives a
small margin of error for deviations before identifying a fault.

We design two experiments on a 10m diamond path over
60s. We compare the average tracking performance of C1 and
C2 on their own as well as the trained DRLBC framework
and the switched control architecture. The cumulative track-
ing error is dependant on duration of flight and the shape of
the path. We hence use the average tracking error as the per-
formance measure reported in this article as it gives a better
indication of general performance. The first experiment tests
the performance under nominal operating conditions while
the second compares performance under 50% rotor faults at
every 5 second interval. The rotor selection is kept random
and results shown are averaged over 10 independent runs to
account for this.

6.1 Experiment 1: Nominal Control
Table 3 shows the average trajectory loss for the 4 tested con-
trollers. DRLBC performs between the performance of C1
and C2 which is exactly as expected. The switched archi-
tecture performs exactly as C2 since no fault switch to C1 is
triggered. This shows if all low-level controllers produce a
similar output signal, blending to any proportions will have
little effect and nominal performance can be maintained even
with a constantly changing blend weight vector.

Controller Average Tracking Error
C1 48.88cm
C2 48.86cm

DRLBC 48.87cm
Switched Control 48.86cm

Table 3: Experiment 1: Average Tracking Accuracy under nominal
conditions.

6.2 Experiment 2: Rotor Faults of 50% at 5s
intervals

Experimental results are shown in Table 4. We firstly inves-
tigate the performance of C1 and C2 under rotor faults. The

Controller Average Tracking Error
C1 50.1cm
C2 60.33cm

DRLBC 50.3cm
Switched Control 55.58cm

Table 4: Experiment 2: Average Tracking error under 50% rotor loss
of efficiency.

Figure 5: Agent actions under rotor faults for blending Roll (Blue)
and Pitch (Red).

aggressive C1 controller performs better (50.1cm avg. error)
as it reacts to faults with a higher response due to the higher
PID gain parameters. This means C1 is more robust to rotor
faults and validates the selection as a fault controller for the
switched architecture. C2 performs with greater deviations
(60.33cm avg. error) which is expected since the controller
reactions to faults are smoother, hence taking longer to stabi-
lize and increasing the overall error.

The switched architecture was able to utilize some of the
benefits of the aggressive controller after the deviation had
crossed a threshold and a fault was identified. With 55.58cm
tracking accuracy it performs close to halfway between the
low-level controller performances. Although this is an im-
provement to C2 the delay in the FDI unit still has major
implications for the overall executed trajectory. The most
important part in successfully stabilizing a rotor fault is the
speed of reaction due to the highly unstable dynamics of a
quadcopter.

The blended architecture performs comparable to C1.
Given that the agent is bound between the low-level con-
trollers the optimal result that could have been attained from
the training is 50.1cm, C1s performance. Figure 5 shows the
blend weight vector applied during a sample run of this ex-
periment. Most of the time both controllers are used to con-
trol the system to some degree. It is interesting to point out
that the agent did not converge to only use C1 as one would
expect since it is the better performing of the underlying con-
trollers. We attribute this to an improved blended controller
output compared to the individual PID controllers. Figure 6
shows the over and undershooting responses of the C1 and
C2 PID controllers as they stabilize on the reference signal
after a rotor fault. The blended control output, shown in red,
stabilizes faster and smoother than the low-level controllers
can on their own which has a positive effect on the overall
tracking performance.

The output of C1 and C2 are both not optimal to stabilize
the system but the agent is able to use them to synthesise an
improved response that is more robust to oscillations around
the set-point and stabilizes quicker. This also plays a factor
in the largely positive reward seen in Figure 4 as this shows
the agent has successfully learned to produce a less oscillat-
ing response signal than the underlying controllers while still
being able to utilize the more aggressive responses from C1
to stabilize rotor faults.

Figure 6: Grey: Low-level controller responses and Red: Blended
signal through DRL. The blended signal is able to stabilize around
the set-point quicker.

To highlight the performance difference we provide Figure
7 which shows the executed trajectories from a sample run of
this experiment for DRLBC (Blue) and switched (Red) archi-
tectures. The effect of the rotor faults can be clearly seen as
abrupt deviations from the X and Y reference paths (Black)
at 5 second intervals.

7 Conclusion

In this article we presented a novel fault tolerant control ar-
chitecture with the ability to learn unknown fault tolerance.
This was achieved through the reliance on existing low-level
control mechanism and an abstract application of deep learn-
ing to the high-level control task. Using blended control,
this architecture exploits a new way to integrate deep learn-
ing algorithms to well known hierarchical control architec-
tures. Low-level controllers are designed based on the type
of response they provide under fault conditions rather than
for specific fault conditions. The FDI unit and it’s associ-
ated delays are replaced with a DDPG agent that generically
identifies degrading performance on a task in real time and
learns to optimize for the new conditions. This architecture
was implemented on a quadcopter trajectory tracking task un-
der rotor loss of effectiveness faults for which no identifica-
tion or pre-defined optimal control mechanism exists. We
validated the effectiveness of the approach through training
and experimentation showing the blended controller is able
to synthesize an improved control signal that handles the un-
known fault as well as improve oscillations around the ref-
erence value. The size of the learning problem is greatly re-
duced compared to current state of the art approaches to learn
direct control of state space to control signals. We showed the
presented approach can track a trajectory under rotor faults
more accurately than a switched architecture with the same
low-level controllers.

Future work includes the training for several faults simul-
taneously and different application domains. More complex
blending functions or different neural network designs pose
a large frontier for exploration for the research community
which can provide more new ways for control systems to
learn to adapt to unknown faults and drive the application of
autonomy to large scale systems.

Figure 7: Trajectory under rotor failure for different control architectures. Red: Switched Architecture, Blue: Blended DRL Architecture.
Black: X and Y Reference.

References
[Blanke et al., 2016] Mogens Blanke, Michel Kinnaert, Jan

Lunze, and Marcel Staroswiecki. Diagnosis and Fault-
Tolerant Control. Springer, third edition, 2016.

[Büyükkabasakal et al., 2017] Kemal Büyükkabasakal,
Barış Fidan, and Aydoğan Savran. Mixing adaptive fault
tolerant control of quadrotor UAV. Asian Journal of
Control, 19(4):1441–1454, 2017.

[Fei et al., 2019] Fan Fei, Zhan Tu, Yilun Yang, Xiangyu
Zhang+, Dongyan Xu+, and Xinyan Deng. Learn to Re-
cover: Reinforcement Learning-Assisted Fault Tolerant
Control for Quadrotor UAVs. 2019.

[Greatwood and Richards, 2019] Colin Greatwood and
Arthur G. Richards. Reinforcement learning and model
predictive control for robust embedded quadrotor guid-
ance and control. Autonomous Robots, pages 1–13,
2019.

[Hwangbo et al., 2017] Jemin Hwangbo, Inkyu Sa, Roland
Siegwart, and Marco Hutter. Control of a quadrotor with
reinforcement learning. IEEE Robotics and Automation
Letters, 2(4):2096–2103, 2017.

[Koch et al., 2019] William Koch, Renato Mancuso, Richard
West, and Azer Bestavros. Reinforcement learning for
UAV attitude control. ACM Transactions on Cyber-
Physical Systems, 3(2):22, 2019.

[Kuipers and Ioannou, 2010] Matthew Kuipers and Petros
Ioannou. Multiple model adaptive control with mixing.
IEEE Transactions on Automatic Control, 55(8):1822–
1836, 2010.

[Lillicrap et al., 2015] Timothy P. Lillicrap, Jonathan J.
Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yu-

val Tassa, David Silver, and Daan Wierstra. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

[Lunze, 2016] Jan Lunze. From fault diagnosis to recon-
figurable control: A unified concept. In 2016 3rd Con-
ference on Control and Fault-Tolerant Systems (SysTol),
pages 413–421. IEEE, 2016.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529,
2015.

[Mueller and D’Andrea, 2014] Mark W. Mueller and Raf-
faello D’Andrea. Stability and control of a quadrocopter
despite the complete loss of one, two, or three propellers.
In 2014 IEEE International Conference on Robotics and
Automation (ICRA), pages 45–52. IEEE, 2014.

[Sutton and Barto, 1998] Richard S Sutton and Andrew G
Barto. Reinforcement learning: An introduction, vol-
ume 1. MIT press Cambridge, 1998.

[Özbek et al., 2016] Necdet Sinan Özbek, Mert Önkol, and
Mehmet Önder Efe. Feedback control strategies for
quadrotor-type aerial robots: a survey. Transactions of
the Institute of Measurement and Control, 38(5):529–554,
2016.

	Introduction
	Deep Reinforcement Learning Blended Control
	Low-Level Controllers
	High-Level Controller
	Blending Function

	Running Example & Related Work
	Comparison to DRLBC

	Deep Reinforcement Learning (DRL)
	Quadcopter Implementation and Training
	Low-Level Controllers
	High-Level Controller
	Training Details
	Rotor Fault Generation
	Reward function

	Training Results

	Experiments
	Experiment 1: Nominal Control
	Experiment 2: Rotor Faults of 50% at 5s intervals

	Conclusion

