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ABSTRACT The usefulness of genomic prediction in crop and livestock breeding programs has prompted
efforts to develop new and improved genomic prediction algorithms, such as artificial neural networks and
gradient tree boosting. However, the performance of these algorithms has not been compared in a systematic
manner using a wide range of datasets and models. Using data of 18 traits across six plant species with
different marker densities and training population sizes, we compared the performance of six linear and six
non-linear algorithms. First, we found that hyperparameter selection was necessary for all non-linear
algorithms and that feature selection prior to model training was critical for artificial neural networks when
the markers greatly outnumbered the number of training lines. Across all species and trait combinations, no
one algorithm performed best, however predictions based on a combination of results from multiple
algorithms (i.e., ensemble predictions) performed consistently well. While linear and non-linear algorithms
performed best for a similar number of traits, the performance of non-linear algorithms vary more between
traits. Although artificial neural networks did not perform best for any trait, we identified strategies (i.e., feature
selection, seeded starting weights) that boosted their performance to near the level of other algorithms. Our
results highlight the importance of algorithm selection for the prediction of trait values.
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The ability to predict complex traits from genotypes is a grand challenge
in biology and is accelerating the speed of crop and livestock breeding
(Heffner et al. 2009; Lorenz et al. 2011; Jonas and de Koning 2013;
Desta and Ortiz 2014). Genomic Prediction (GP, aka Genomic Selec-
tion), the use of genome-wide geneticmarkers to predict complex traits,
was originally proposed by Meuwissen et al. (Meuwissen et al. 2001) as

a solution to the limitations of Marker-Assisted Selection (MAS) where
only a limited number of previously identified markers with the stron-
gest associations are used to select the best lines. GP is particularly
well-suited for the prediction of quantitative traits controlled by many
small-effect alleles (Ribaut and Ragot 2007). Amajor challenge in using
GP is estimating the effects of a large number of makers (p) using
phenotype information of a comparatively limited number of indi-
viduals (n) (i.e., P . . n) (Meuwissen et al. 2001). To address this
challenge, Meuwissen et al. first presented three statistical methods
for GP (Meuwissen et al. 2001). The first was a linear mixed model
called ridge regression Best Linear Unbiased Prediction (rrBLUP),
which uniformly shrinks the marker effects. The other two were
Bayesian approaches, BayesA (BA) and BayesB (BB), which both
differentially shrink the marker effects and with BB also performing
variable selection. Since then, additional approaches have been shown
to be useful for GP, including Least Absolute Angle and Selection
Operator (LASSO) (Usai et al. 2009), Elastic Net (Zou and Hastie
2005), Support Vector Regression with a linear kernel (SVRlin)
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(Moser et al. 2009; Xu et al. 2018), and additional Bayesian methods
including Bayesian LASSO (BL), BayesCp, and BayesDp (de los
Campos et al. 2009; Habier et al. 2011).

While these approaches perform well when dealing with high di-
mensional data (i.e., P . .n), they are all based on a linear mapping
from genotype to phenotypes, and therefore may not fully capture
non-linear effects (e.g., epistasis, dominance), which are likely to
be important for complex traits (Holland 2007; Monir and Zhu
2018). To overcome this limitation, non-linear approaches, includ-
ing reproducing kernel Hilbert spaces (RKHS) regression (Gianola
et al. 2006; de los Campos et al. 2010), Support Vector Regression
with non-linear kernels (i.e., polynomial SVRpoly and radial basis
function SVRrbf (Long et al. 2011; Kasnavi et al. 2017)), and decision
tree based algorithms such as Random Forest (RF) (González-Recio
and Forni 2011; Spindel et al. 2015) and Gradient Tree Boosting
(GTB) (González-Recio et al. 2013) have been applied to GP prob-
lems. In previous efforts to compare the performance of multiple
linear and non-linear approaches (Heslot et al. 2012; Neves et al. 2012;
Blondel et al. 2015; Ramstein et al. 2016; Roorkiwal et al. 2016), no
single method performs best in all cases. Rather, factors such as the
size of the training data set, marker type and number, trait heritability,
effective population size, the number of causal loci, as well as genetic
architecture (the locus effect size distribution) can all affect algorithm
performance (Meuwissen 2009; Riedelsheimer et al. 2013; Spindel
et al. 2015; Norman et al. 2018). This highlights the importance of
comparing new algorithms across a diverse range of datasets.

With improvements in computing speeds, the development of
graphics processing units (GPUs), and breakthroughs in algorithms
for backpropagation learning (Rumelhart et al. 1986; Parker 1987),
there has been a resurgence of research using deep learning (i.e.,
artificial neural networks (ANNs)) to model complex biological
processes (Angermueller et al. 2016; Webb 2018). ANNs are a class
of machine learning methods that perform layers of transformations
on features to create abstraction features, known as hidden layers,
which are used for predictions. The first application of ANNs for GP
was presented in 2011, when Okut et al. trained fully connected
ANNs (i.e., each node in a layer is connected to all nodes in surround-
ing layers) containing one hidden layer to predict body mass index in
mice (Okut et al. 2011). Since 2011, more complex ANN architectures
have been used for GP including radial basis function neural networks
(González-Camacho et al. 2012) deep neural networks (Ehret et al.
2015; Bellot et al. 2018), deep recurrent neural networks (Pouladi et al.
2015), probabilistic neural network classifiers (González-Camacho
et al. 2016, 2018), and convolutional neural networks (CNNs)
(Ma et al. 2018). With only one exception (Bellot et al. 2018), these
ANNs have been applied to datasets with relatively few genetic
markers (,60k), however, as sequencing continues to become less
expensive, whole-genome marker datasets are becoming larger with
some breeding programs generating data for hundreds of thousands
of markers. Because of the internal complexity of ANNmodels, train-
ing an ANN with so many markers can result in sub-optimal solu-
tions (i.e., underfitting). Therefore, it is especially important to
benchmark ANNs against other GP statistical approaches on data-
sets with high dimensionality where underfitting may occur.

GP has yielded promising results for breeders. However, a compre-
hensive comparison of GP algorithms, particularly ANNs, on a wide
range of GP problems is missing (Figure 1A). Here we compared the
ability of 12 GP algorithms (see Methods, Figure 1B) to predict a di-
verse range of physiological traits in six plant species (maize, rice,
sorghum, soy, spruce, and switchgrass; Figure 1C). These six data sets
(referred to as the benchmark data sets) represent a wide range of GP

data types, with the size of the training data set ranging from 327 to
5,014 individuals, and 4,000 to 332,000 markers derived from array-
based approaches or sequencing. Compared to the linear algorithms
included in the study, the non-linear algorithms, especially ANNs, re-
quire more pre-modeling tuning (e.g., hyperparameter selection, fea-
ture selection). Therefore, before comparing algorithm performance
across all 18 combinations of species and traits, we first focused on
predicting plant height in each species in order to establish best prac-
tices for model building. Because ANNs are underrepresented in GP
comparison studies and our first attempts to use ANNs for GP
performed relatively poorly, we focus on methods to improve ANN
performance, including reducing model complexity using feature se-
lection and combining relationships learned from linear algorithms
into the more complex ANN architectures (i.e., a seeded ANN ap-
proach and convolutional layers (i.e., CNNs)). Then, using lessons
learned from predicting height, we compared the performance of all
GP algorithms across all species and traits.

MATERIALS AND METHODS

Genotype and phenotype data
Genotypic data from six plant species were used to predict 3 traits from
each species (Figure 1C). The maize phenotypic (Hansey et al. 2011)
and genotypic (Hirsch et al. 2014) data were from the pan-genome
population, maize trait values were averaged over replicate plots. The
rice data were from elite breeding lines from the International Rice
Research Institute irrigated rice breeding program (Spindel et al. 2015),
and dry season trait data averaged over four years were used. The
sorghum data were generated from sorghum lines from the US Na-
tional Plant Germplasm System grown in Urbana, IL (Fernandes et al.
2017) and trait values were averaged over two blocks for this study.
The soybean data were generated from the SoyNAM population
containing recombinant inbred lines (RILs) derived from 40 biparental
populations (Xavier et al. 2016). The white spruce data were obtained
from the SmartForests project team, using a SNP-chip developed by
Quebec Ministry of Forest Wildlife and Parks (Beaulieu et al. 2014).
Switchgrass phenotypic (Lipka et al. 2014) and genotypic (Evans et al.
2018) data were generated from the Northern Switchgrass Associ-
ation Panel (Evans et al. 2015) which contains clones or genotypes
from 66 diverse upland switchgrass populations.

The genotype data were obtained in the form of biallelic SNPs with
missingmarkerdataalreadydroppedor imputedby theoriginal authors.
Marker callswereconvertedwhennecessary to [-1,0,1] corresponding to
[aa,Aa,AA]whereAwas either the referenceor themostcommonallele.
Genome locations ofmaize SNPswere converted fromassemblyAGPv2
toAGPv4,withAGPv2SNPs thatdidnotmap toAGPv4beingremoved,
leaving 332,178 markers for the maize analysis. Phenotype values were
normalized between 0 and 1. Lines withmissing phenotypic value for
any of the three traits were removed.

Genomic selection algorithms
To assess what statistical approaches are most frequently used for
genomic selection, we conducted a literature search of papers apply-
ing genomic selectionmethods to crop or simulated data from January
2012-February 2018. We recorded what statistical approach(es)
was(were) applied in each study (Table S1), allowing us to calculate
both the total number of times an approach had been applied and
how many times any two approaches were directly compared (Figure
1A). Based on the results from this literature search, nine commonly
used statistical approaches were included in this study: rrBLUP, Bayes
A (BA), Bayes B (BB), Bayesian LASSO, Bayesian-RR, RF, SVR with a
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linear kernel (SVRlin), SVR with polynomial kernel (SVRpoly), SVR
with radial basis function kernel (SVRrbf). Three additional machine
learning approaches, gradient tree boosting (GTB), artificial neural
networks (ANN), and convolutional neural networks (CNN), were also
included because of their ability to model non-linear relationships.

Most linear algorithms were implemented in R packages rrBLUP
(Endelman 2011) and BGLR (for Bayesian methods including BRR:
Bayesian RR, BA: Bayes A, BB: Bayes B, and BL: Bayesian LASSO)
(Pérez and de los Campos 2014). These algorithms vary in what ap-
proach they use to address the P . . n problem (Figure 1B), for
example rrBLUP performs uniform shrinkage on all marker coef-
ficients to reduce variance of the estimator, while BB performs
differential shrinkage of the marker coefficients and variable selec-
tion. The differences between these algorithms have been thoroughly
reviewed previously (de los Campos et al. 2013). Models for Bayesian
methods were trained for 12,000 iterations using a burn-in of 2,000.

Non-linear algorithms (SVRpoly, SVRrbf, RF, and GTB) and SVRlin
were implemented in python using the Scikit-Learn library (Pedregosa
et al. 2011). For SVR algorithms, the marker data are mapped into a
new feature space using linear or non-linear kernels (i.e., poly, rbf) and
then linear regression within that feature space is performed with
the goal of minimizing error outside of a margin of tolerated error.
The RF algorithmworks by averaging the predictions from a “forest” of
bootstrapped regression trees, where each tree contains a random sub-
set of the lines and of the markers (Breiman 2001). Related to RF, GTB
algorithm uses the principle of boosting (Friedman 2001) to improve
predictions from weak learners (i.e., regression trees) by iteratively
updating the learners to minimize a loss function, therefore gen-
erating better weak learners as training progresses.

Artificial Neural Networks (ANNs) were implemented in python
using TensorFlow (Girija 2016). The input layer for the ANNs con-
tained the genetic markers for an individual (x; Figure 1B), the nodes
in the hidden layers were all fully connected to all nodes in the pre-
vious and following layers (i.e., Multilayer Perceptron). A non-linear
activation function (selected during the grid search, see below) was
applied to each node in the input and hidden layers, except the last
hidden layer, which was connected with a linear function to the
output layer, the predicted trait value (y). To reduce the likelihood
of vanishing gradients, when the error gradient, which controls the
degree to which the weights are updated during each iteration of
training, becomes so small the weights stop updating thus halting
model training, in the ANN, the starting weights (w) were scaled
relative to the number of input markers using the Xavier Initializer
(Glorot and Bengio 2010). Weights were then optimized using the
Adam Optimizer (Kingma and Ba 2014) with a learning rate selected
by the grid search (described below). To determine the optimal stop-
ping time for training (i.e., number of epochs), an early stopping
approach was used (Prechelt 1998), where the training set was further
divided into training and validation, and early stopping occurred
when the change in mean squared error (MSE) for the validation
set was, 0.1% for 10 epochs using a 10 epoch burn-in. Occasionally,
due to poor random initialization of weights, the early stopping cri-
teria would be reached before the network started to converge and the
resulting network would predict the same trait value for every line.
When this was observed in the validation set the training process was
repeated starting with new initialized weights.

Convolutional Neural Networks (CNNs) were implemented in
Python 3.6 using Tensorflow 2.0. The input layer for the CNNs
consisted of the genetic markers for an individual one-hot-encoded
so that each possible allele at each locus was represented as present
or absent. Because of the large size of the possible hyperparameter

Figure 1 Algorithms used and compared in past GP studies and
algorithms and data included in the GP benchmark. (A) Number of
times a GP algorithm was utilized (diagonal) or directly compared to
other GP algorithms (lower triangle) out of 91 publications published
between 2012-2018 (Table S1). GP algorithms were included if they
were utilized in .1 study. (B) A graphical representation of the GP
algorithms included in the study and their relationship to each other.
Colors designate if the algorithm identifies only linear (orange) or
linear and non-linear (green) relationships. The placement of each
algorithm on the tree designates (qualitatively) the relationship be-
tween different algorithms. The labels at each branch provide more
information about how algorithms in that branch differ from others.
rrBLUP, ridge regression Best Linear Unbiased Predictor; BRR, Bayesian
Ridge Regression; BA, BayesA; BB, BayesB; BL, Bayesian LASSO; SVR,
Support Vector Regression (kernel type: lin, linear; poly, polynomial; rbf,
radial basis function); RF, Random Forest; GTB, Gradient Tree Boosting;
ANN, Artificial Neural Network; CNN, Convolutional Neural Network.
(C) Species and traits included in the benchmark with training popu-
lation types and sizes and marker types and numbers for each dataset.
NAM: Nested Association Mapping. DM: partial diallel mating. GBS:
genotyping by sequencing. SNP: single nucleotide polymorphism. HT:
height. FT: flowering time. YLD: yield. GM: grain moisture. R8: time to
R8 developmental stage. DBH: diameter at breast height. DE: wood
density. ST: standability.
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space (Table S2), a randomized search (using RandomizedSearchCV
from Scikit-Learn with 5 folds) was performed on rice for predicting
height on one replicate, and the best combination of hyperparameters
(lowest average mean squared error) from this one search was used
for all other species, traits, and replicates. The input data first passed
through a convolutional layer, followed by a maximum pooling layer,
a dropout layer, a dense (i.e., fully connected) layer, a batch normal-
ization layer, and finally to the output layer containing one node
with the predicted trait value. The EarlyStopping function in Keras
(https://keras.io/callbacks/#earlystopping) was used to avoid overfitting
(min_delta = 0, patience = 10). To reduce the time and memory re-
quirements, CNN models were trained using a batch size = 100 and
run for a maximum of 1,000 epochs. As with ANNmodels, if the early
stopping criteria was reached before the network started to converge,
the model would be re-run starting with new initialized weights.

To incorporate predictions from multiple algorithms into one
summary prediction, an ensemble approach was used where the
ensemble predicted trait value was the mean predicted trait value
from 11 algorithms (EN11: rrBLUP, BRR, BA, BB, BL, SVR, SVRpoly,
SVRrbf, RF, GTB, ANN) or five algorithms (EN5: rrBLUP, BL,
SVRpoly, RF, ANN). The subset of five consisted of algorithms with
differing statistical bases, where rrBLUP represented penalized
methods, BL represented the Bayesian approaches, SVRpoly repre-
sented non-linear regularized functions, RF represented decision tree
based methods, and ANN represented the deep learning approach.
This ensemble predicted trait value was then compared to the true
trait values to generate performance metrics. A Repeated Measures
Analysis of variance (ANOVA) implemented in R was used to com-
pare model performance, where performance of each model on each
replicate test set were considered related.

Hyperparameter grid search using cross-validation
To obtain the best possible results from each algorithm, a grid search
approach was used to determine the combination of hyperparameters
that maximized performance for each trait/species combination. No
hyperparameter needed to be defined for rrBLUP, BL, or BRR. For
rrBLUP, the R package estimates the regularization and kernel pa-
rameters from the data. For BL or BRR, parameters for these Bayesian
regression methods were also estimated from the data. Between one
and five hyperparameters were tested for the remaining algorithms
(Table S2).

To avoid biasing our hyperparameter selection, an 80/20 training/
testing approach was used, where 20% of the lines were held out from
each model as a testing set and the grid search was performed on the
remaining 80% of training lines. For RF, SVRlin, SVRpoly, SVRrbf, and
GTB algorithms, 10 replicates of the grid search were run using the
GridSearchCV function from Scikit-Learn with fivefold cross valida-
tion. Ten replicates of the grid search were also run for ANN models,
where for each replicate 80% of the training data were randomly selected
for training the network with each combination of hyperparameters and
the remaining 20% used to select the best combination. This whole
process (train/test split, grid search) was replicated 10 times, with a
different 20% of lines selected as the test set for each replicate. ANOVA
implemented in R was used to determine which hyperparameters sig-
nificantly impacted model performance for each species.

Assessing predictive performance
The predictive performance of the models was compared using two
metrics. For the grid search analysis, the mean squared error (MSE)
between the predicted (Ŷ) and the true (Y) trait value was used. For

the model comparisons, Pearson correlation coefficient (r) between
the predicted (Ŷ) and the true trait value (Y) was used as it is the
standard metric for GP performance (Heffner et al. 2009; Heslot
et al. 2012; Riedelsheimer et al. 2013). It was computed using the
cor() function in R for rrBLUP and the Bayesian approaches or
the numpy corrcoef() function in Python for the ML and ANN
approaches. Only predicted trait values for lines from the test set
were considered when calculating r. Summary performance metrics
(% of best r, rank, variance) were calculated using the mean pre-
dictive performance (r) across all replicates for each GP algorithm
for each species/trait combination.

Feature selection
The top 10, 50, 100, 250, 500, 1000, 2000, 4000, and 8000markers were
selected using three different feature selection algorithms: Random
Forest (RF), Elastic Net (EN), and BayesA (BA). RF and EN feature
selection were implemented in Scikit-Learn and BA was implemented
in the BGLR package in R. The EN feature selection algorithm requires
tuning of the hyperparameter that controls the ratio of the L1- and L2-
penalties (e.g., L1:L2 = 1:10 = 0.1). Because the L1 penalty function
performs variable selection by shrinking some coefficients to zero, we
started with an initial weight on the L1 penalty of 0.1 and then, if
fewer than 8,000 markers remained after variable selection, we re-
duced it in steps of 0.02 until that criteria was met (a 4,000 marker
threshold was used for spruce and soy, which only had 6,932 and
4,240 markers available, respectively).

To avoid bias during feature selection, the 80:20 training/testing
approach described above was used, where feature selection was
performed on the training data and the ultimate performance of
models built using the selectedmarkers was scored on the testing set.
This was repeated for all 10 testing sets. A repeat measures ANOVA
was conducted to compare feature selection algorithms, the number
of features selected, and GP algorithms (i.e., independent variables)
on model performance (i.e., dependent variable) where replicates
were considered repeat measures as they used the same testing set.
One-sided, paired Wilcoxon Signed-Rank tests were conducted to
determine if model performance (i.e., dependent variable) increased
after feature selection (all vs. top 4,000 for soy and spruce, all vs. top
8,000 for other species) (i.e., independent variable). Resulting p-values
were corrected for multiple testing (q-value) (Benjamini and Hochberg
1995).

Initializing ANN starting weights seeded from other GP
algorithms
Inaddition tobuildingANNswith randomly initialized startingweights,
we tested the usefulness of seeding the starting weights with informa-
tion from other GP algorithms (i.e., rrBLUP, BB, BL, or RF). This is an
ensemble-like approach in that it utilizes multiple algorithms tomake a
final prediction. Ensemble approaches often perform better than single
algorithm approaches (Dietterich 2000). First, after the data were di-
vided into training, validation, and testing sets and, for species with
large p:n ratios (i.e., maize, rice, sorghum, switchgrass) the top 8,000
markers were selected, we applied a GP algorithm (rrBLUP, BB,
BL, or RF) to the training data. From that model we extracted the
coefficients/importance scores assigned to each marker and used
those as the starting weights for 25% of the nodes in the first hidden
layer. We also tested seeding starting weights for 50% of the nodes to
predict height in all 6 species but found this significantly increased the
model error (MSE) on the validation set (ANOVA; p-value= 0.04), so
only results from seeding 25% were included. Because we still needed

3694 | C. B. Azodi et al.

https://keras.io/callbacks/#earlystopping


to reduce the likelihood of vanishing gradients, described above, we
manually adjusted the scale of the coefficients/importance scores to
match the distribution of the starting weights assigned the remaining
75% of the nodes in the first hidden layer by Xavier Initialization.
Finally, to reduce bias in the ANN, random noise was introduced to
the seeded nodes by multiplying each starting weight with a random
number from a normal distribution with a mean =0 and the standard
deviation equal to the standard deviation of weights from Xavier
Initialization.

After the training data were used to determine these seeded starting
weights, it was used to train the ANNmodel, the validation set was used
to select the best set of hyperparameters and the early stopping point.
Then the final trained model was applied to the testing set and
performance metrics were calculated. A repeat measures ANOVA
was conducted to test if the seeded or the unseededANNmodels (i.e.,
independent variable) differed in the amount of variation (standard
deviation) in model performance across replicates (i.e., dependent
variable), with each species acting as a repeat measurement.

Data availability
For reproducibility, all six datasets along with training/testing designa-
tions are available onDryad (https://doi.org/10.5061/dryad.xksn02vb9)
and scripts to run all of the algorithms included in this study onGitHub
for future benchmarking. All code used in this study is available on
GitHub (https://github.com/ShiuLab/Manuscript_Code/tree/master/
2019_GP_Comparison). A README file is included, which provides
detailed instructions on how to use the code to generate GP models.
Supplemental material available at FigShare: https://doi.org/10.25387/
g3.9855590.

RESULTS

Hyperparameter grid search is critical, particularly
among non-linear algorithms
We selected six linear and five non-linear algorithms (note, CNNs are
discussed separately) to compare their performance inGPproblems (see
Methods).While some model parameters can be estimated from the
data (de los Campos et al. 2013), other parameters, referred to as
hyperparameters, have to be user-defined (Chapelle et al. 2002;
Kuhn and Johnson 2013). This was the case for eight of the algorithms
in our study: BA, BB, SVRlin, SVRpoly, SVRrbf, RF, GTB, and ANN.
For these algorithms we conducted a grid search to evaluate the pre-
diction accuracy of models using every possible combination of
hyperparameter values (for lists of hyperparameters, see Table S2).
To produce unbiased estimates of prediction accuracy the grid search
was performed within the training set so that no data from the testing
set was used to select hyperparameter values. Then we used the best
set of hyperparameters from the grid search to build models using
genotype and phenotype data from six plant species. This allowed us
to compare the predictive performance of all algorithms included in
the benchmark datasets.

To determine which hyperparameters significantly impacted
model performance, we tested for changes in model performance
(mean squared error; MSE) across the hyperparameter space for
each algorithm/species/trait combination using Analysis of Vari-
ance (ANOVA). The degrees of freedomhyperparameter for BA and
BB, both linear algorithms, that influences the shape of the prior
density ofmarker effects (de los Campos et al. 2013) had no significant
impact on model performance (ANOVA: p-value= 0.41�1.0; Table
S3). Other parameters for the Bayesian algorithms were determined
using rules built into the BGLR package that account for factors such

as phenotypic variance and the number of markers (p) (Pérez and de
los Campos 2014) and were therefore not considered in our grid
search. However, 15 of 16 of the hyperparameters tested for the
non-linear algorithms significantly impacted performance in at least
one species (Table S3, Figure S1A-C). Using height in maize as an
example, we found that SVRpoly algorithm performed better (i.e.,
lowerMSE) using 2nd degree polynomials compared to using up to 3rd

degree polynomials (p-value = 1�10221, Figure 2A). For RF-based
models, the maximum depth (max depth) of decision trees allowed
significantly impacted performance (p-value = 1�1023, Table S3),
with shallower trees typically performing better (Figure 2B). This
pattern was also observed in RF models predicting height for rice,
spruce, and soy (p-value= 1�10266�5�1024, Table S3, Figure S1B).
Because shallower decision trees are less complex, they tend not to
overfit, suggesting the best hyperparameters for RF are those that
reduce overfitting. The only hyperparameter from the non-linear
algorithms that did not impact performance was the rate of dropout
(a useful regularization technique to avoid overfitting) for ANNmodels,
where there was no significant change in model performance when
two different rates (10% and 50%) were used (p-value= 0.24 �0.97,
Table S3).

ANN is the most significantly impacted by
hyperparameter choice
Hyperparameters for SVRlin, SVRpoly, SVRrbf, RF, and GTB tended
to have moderate effects on MSE, while ANN hyperparameters
often caused substantial changes in MSE (Figure 2A-C; Figure
S1A-C). Across the six species, the median variance in MSE across
the hyperparameter space for ANN was 6�106, but ranged from
3�1023- 0.1 for the other GP algorithms (Figure S1D) For example,
for predicting height in maize, SVRpoly models built using the 2nd

degree polynomial outperformed those built using the 3rd degree
polynomial with a decrease inMSE�0.05 (Figure 2A), while for ANN
models, hyperparameter combinations that performed the best (i.e.,
Sigmoid activation function and no L2 regularization) resulted in
models with MSEs that were.500 lower than the worst performing
model (Rectified Linear Unit (ReLU) activation function, no L2 reg-
ularization, and large numbers of hidden nodes; Figure 2C). This
highlighted that, while hyperparameter selection is necessary for
all non-linear algorithms, it is especially critical for building ANNs
for GP problems.

Using the best set of hyperparameters for each model, we next
compared the predictive performance (Pearson’s correlation coefficient,
r, between predicted and true trait values) of each algorithm on plant
height. As with past efforts to benchmark GP algorithms (Heslot et al.
2012; Neves et al. 2012), no one algorithm always performed the best
(white bolded; Figure 2D). For example, while rrBLUP performed best
for maize, sorghum, and switchgrass, BA performed best for soy, and
RF performed best for rice and spruce. Notably, ANNs substantially
underperformed compared to other non-linear algorithms, with a me-
dian performance at 84% of the best r for each of the six species (i.e.,
16% below the best performing algorithm for that trait/species).

Notably, among the six species, ANN performed the best in soy
(r = 0.44) relative to the species best algorithm BA (r = 0.47, Figure
2D). Soy has the largest number of training lines among the six species
(5,014) and has a marker to training line ratio close to one (Figure 1C).
Thus, we hypothesized the poor performance of the ANN models was
in part due to our inability to train a network with so many features
(markers) and so little training data (lines). During ANN model
training, the weights assigned to each connection between nodes in
neighboring layers of the network have to be estimated. Because
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every input marker is connected to every node in the first hidden
layer, including more markers in the model will require more
weights to be estimated, resulting in a more complex network that
is more likely to underfit. In an ideal situation, to account for the
complexity in these large networks, five to ten times more instances
(lines) than features (markers) would need to be available for train-
ing (Klimasauskas 1993). Alternatively, one can reduce model com-
plexity by only including markers that are most likely to be associated
with the trait using feature selection methods.

Feature selection improves performance of
ANN models
ANNs and sometimes other non-linear algorithms performed poorly
compared to linear methods, which could be due to an insufficient
number of training lines relative to the number of markers. To address
this, we used feature selection to identify and select the markers most
associatedwithtraitvariation.Because thenumberofmarkersassociated
with a trait is dependent on the genetic architecture of the trait and is not
typically known,models were built using a range of numbers ofmarkers
(P = 10�8,000) and were compared to models built using all available
markers from each species. Because performing feature selection on the
training and testing data can artificially inflate prediction accuracies
(Bermingham et al. 2015), feature selection was conducted on the
training set only. This was repeated 10 times, using a different subset
of lines for testing for each replicate (see Methods).

Three feature selection algorithms (RF, BayesA, and Elastic Net
(EN)) were compared to predict height inmaize, the species with the
largest number ofmarkers (p) relative to training lines (n) (p:n= 850,
Figure 1C). While each algorithm selected a largely different subset
of markers (Figure 3A, Figure S2A), the degree of overlap was signif-
icantly greater than random expectation. To demonstrate this, we

randomly selected three sets of 8,000 maize markers and counted
how many markers were present in all three sets 10,000 times and
found that the 99th percentile of overlap was equal to 10, however
we observed an average of 220 overlapping markers across repli-
cates using these three feature selection approaches. When the
different feature selection subsets were used to predict height in
maize, there was a significant interaction between the number of
available markers (p) and the feature selection method (repeat
measures ANOVA: p-value = 1.7�10212). Exploring this interaction
further, we found that, while feature selection algorithms performed
similarly with large n, RF tended to perform the best when fewer
markers were selected for GP (Figure 3B; Figure S2B) and was there-
fore used to test the impact of feature selection on predicting height
in the other five species.

For species with a low p:n ratio (i.e., soy and spruce), for all GP
algorithms tested, as p increased the model performance tended to
increase continuously (e.g., all GP algorithms in sorghum) or, in some
cases, the model performance reached a maximum (or a plateau)
quickly (e.g., in soy after 2,500 markers were used) (Figure 3C). For
these species, there was no significant improvement in performance
after feature selection (all vs. top 4,000) using any GP algorithm (one-
sided, paired Wilcoxon Signed-Rank test: q-value = 0.98 �0.99;
Figure 3D). For example, ANNs built using all 6,932 spruce markers
performed no better than those built using the top 4,000 markers
(p-value= 0.98).

For species with a large p:n ratio (i.e., maize, rice, sorghum, and
switchgrass), a similar pattern was observed for rrBLUP, SVRlin,
and GTB, where performance increased or reached a plateau as p
increased and no significant improvement in performance was found
after feature selection (P = 8,000) (q-value = 0.28 �0.99; Figure 3D).
However, for these four species, feature selection improved the

Figure 2 Grid search results for height in maize and overall GP algorithm performance for predicting height across species. (A) Average of mean
squared error (MSE) over hyperparameter space (penalty, C) for Support Vector Regression (SVR) based models predicting height in maize. SVRrbf
and SVRpoly results are shown using gamma = 1x1025 and 1x1024, respectively. Poly: polynomial. RBF: Radial Basis Function. (B) Distribution of
MSEs across hyperparameter space for Random Forest (RF; left) and Gradient Tree Boosting (GTB; right) as the maximum features available to
each tree (Max Features) and maximum tree depth (color) change. GTB results are shown using a learning rate = 0.01. (C) Average MSE across
hyperparameter space for ANN models with different network architectures, degrees of regularization (dropout or L2), using either the Rectified
Linear Unit (ReLU; left) or Sigmoid (right) activation function. (D) Mean performance (Pearson’s Correlation Coefficient: r, text) for predicting height
and percent best r (colored box, top algorithm for each species = 100% (red)). White text: the best r values. Violin-plots show the median and
distribution of r values for each trait (right) and algorithm (bottom).
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performance of ANNmodels (q-value= 0.019�0.047; Figure 3D). For
example, after feature selection prediction of height in maize using
ANNs improved from r=0.17 to 0.41, a 141% increase. Ultimately,
performing feature selection prior to ANN training for these four

datasets with large p:n ratios, improved ANN performance (median
r at 89% of the best r for each of the six species) compared to ANNs
without feature selection (84% of the best r). Therefore, for the GP
benchmark analysis, feature selection was performed prior to model
building for additional traits for maize, rice, sorghum, and switch-
grass and the top 8,000 markers were used. Because feature selection
only improved the performance of RFmodels in sorghum and switch-
grass, we did not perform feature selection before training RF models
in the full benchmark study.

While feature selectionnotably improvedANNperformance,ANNs
still often underperformed compared to other GP algorithms (Figure
3C),meaning the theywere unable to learn even the linear relationships
between markers and traits that were found using the linear-based
algorithms. Because ANNs should theoretically at least match the per-
formance of linear algorithms, this suggests that the ANN hyperpara-
meters are not optimal. Furthermore, we found that, even after feature
selection, there was greater variation in performance across replicates
forANNmodels compared to rrBLUP, SVRlin, RF, andGB (Figure S2C-D),
indicating the ANN models did not always converge on the best
solution. One potential reason for the is that the final trained net-
work can be heavily influenced by the initial weights used in ANN,
which are selected randomly. In addition, while random weight
initialization, a procedure we have used thus far, reduces bias in
the network, it can also result in some networks converging on a
local, rather than global, optimal solution.

Non-random initialization of ANN starting weights and
convolutional layers improve ANN performance for
some species
To reduce the likelihood of ANNs converging to locally optimal
solutions, we developed an approach that allowed the ANNs to utilize
the relationship between markers and traits determined by another GP
algorithm. In this approach, a GP algorithm was applied to the training
lines, and the coefficient or importance score assigned to each marker
from this algorithm was used to seed the starting weights (Figure 4A).
Four GP algorithms were tested to seed the weights: rrBLUP, BB, BL,
and RF (referred to as ANNrrBLUP, ANNBB, ANNBL, and ANNRF, re-
spectively). Because this approach could predispose the networks to
only learn the relationship already identified by the seed algorithm,
two steps were taken to re-introduce randomness into the network
(see Methods). First, the seeded approach was only used to initialize
starting weights for 25% of the nodes in the first hidden layer, while
connection weights to the remaining 75% of nodes were initialized
randomly as before. Second, noise was infused into the starting weights
for the 25% of nodes that were seeded.

Applying this approach to predict plant height we found that ANN
performance improved for three of six species (Figure 4B). For example,
the average performance for rice without seeding (ANN) was r = 0.25
and with seeding from BL (ANNBL) was r = 0.32, a 28% improvement,
while for sorghum, ANNBL had,0.1% improvement over the original
ANN methods. Seeding ANN models did not significantly reduce the
amount of variation in model performance across replicates (repeated
measure ANOVA: p-value= 0.39, Table S4). Ultimately, seeded ANN
models had a median performance between 89–90% of the best r for
each species (compared to 89% with random initialization, Figure 4B).
While this represented only a moderate improvement, we included the
seeded ANN approach in the benchmark analysis because of how sub-
stantial the improvement was for some species (i.e., rice).

Another deep learning strategy for reducing the complexity of GP
problems and consequently decreasing the likelihood of converging on
local optimum is to use convolutional and pooling layers to summarize

Figure 3 Impact of feature selection on GP algorithm performance. (A)
Average number of overlapping markers in the top 8,000 markers
selected by three feature selection algorithms for predicting height in
maize across ten replicates. EN: Elastic Net. (B) Change in ANN
predictive performance (r) at predicting height in maize as the number
of input markers (p) selected by three feature selection algorithms
(BayesA: BA, EN, and Random Forest: RF) increases. Dashed line:
mean r when all 332,178 maize markers were used. (C) Mean r of
rrBLUP, SVRlin, RF, GTB, and ANN models for predicting height using
subsets or all (X-axis) markers as features across 10 replicate feature
selection and ML runs for each of six species with their ratios of num-
bers of markers (p) to numbers of lines (n) shown. Data points were
jittered horizontally for ease of visualization. (D) The significance
(-log10(q-value), paired Wilcoxon Signed-Rank test) of the difference
in r between models from different GP algorithms (colored as in Figure
3C) generated using a subset of 4,000 or 8,000 and all markers as
input. Dotted line designates significant differences (p-value , 0.05).
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local patterns of genetic markers and learn from these summaries
(Ma et al. 2018). We tested this approach by training Convolutional
Neural Networks (CNNs) to predict plant height (Figure S3A). No-
tably, feature selection (n= 8,000) had either no or a negative impact
on CNN performance. For example, the average performance of
CNNs at predicting height in maize, the species with the most genetic
markers, was r = 0.39, but dropped to r = 0.37 after feature selection.
CNNs performed better than ANNs at predicting height in two of six
species (yellow; Figure 4B), with the biggest improvement in rice
where the average performance increased from r = 0.25 using ANNs
to r = 0.32 using CNNs, a 32% improvement. While CNNmodels did
not reduce the amount of variation in model performance across
replicates (repeated measure ANOVA: p-value = 0.08, Table S4), we
included CNNs in the final benchmark analysis because of the prom-
ising results in rice and switchgrass.

No one GP algorithm performs best for all species
and traits
Having established best practices for hyperparameter and feature se-
lection for our datasets, we next compared the performance of all GP
algorithms for predicting three traits in eachof the six species. Formaize,
rice, and soy, these traits included height, flowering time, and yield
(Figure 1C). For species where data were not available for one or more
of these traits, other traits were used (see the panel labeled “Others”,
Figure 5A). As with past efforts to benchmark GP algorithms (Heslot
et al. 2012; Neves et al. 2012), different algorithms performed best for
different species/trait combinations (Figure 5A; Table S5). Thus, we
utilized the predictive power of multiple algorithms to establish an
ensemble prediction using all (except CNN: EN11) or a subset of five
(EN5) algorithms (seeMethods). The ensemble models consistently
performed well, with EN5 or EN11 being the best (three) or tied for
the best (nine) algorithm for 12 of the 18 species/trait combinations
included in the benchmark and had a median performance rank of
3 (Figure 5B; Table S6). For the remaining 6 species/trait combina-
tions where EN5 or EN11 weren’t among the best performers, they
tended to perform only slightly worse (median % of best r = 99.2%,
Figure 5A). This suggests that ensemble-based predictions are more

stable and more likely to result in better trait predictions than a single
algorithm.

Focusing on the species/trait combinations where one of the non-
ensemble algorithms was or tied for best, we found that a linear
algorithm performed best for five of the species/trait combinations, a
non-linear algorithm performed best for four species/trait combina-
tions, and both a linear and a non-linear algorithm performed equally
well for the remaining six species/trait combinations (Figure 5B). This
finding suggests that linear and non-linear algorithms are equally well
suited for GP. The linear algorithms BRR and BA performed best over-
all, being among the top performers for 9 and 8 traits, respectively, and
with the top two median ranks of five and 4.5, respectively (Table S6).
The top performing non-linear algorithm was SVRpoly, which was
among the top performers for 8 traits and had a median rank of 6.
There was notably greater performance variation across species/traits
for non-linear algorithms (mean variance = 1.03%) compared linear
algorithms (mean variance = 0.65%) (Table S6). For example, SVRrbf

performed poorly at predicting developmental timing traits (median
83% of the best r), however it had or was tied for the best prediction
for three of the four “other” traits (median 100%of the best r) (Figure 5A).
Results from ANN models using randomly initialized (ANN) and
BB seeded (ANNBB) weights are shown because ANNBB had the best
performance of the seeded ANNmodels (see Table S5, S6 for results
from other seeded ANNs). Notably, none of the randomly initialized
ANN (median rank = 13.5), the ANNBB (median rank = 13), or the
CNN (median rank = 15.5) models performed best for any trait
(Table S6).

One limitation of comparing the mean score or performance rank
is that small but consistent differences in model performance could
be missed. To account for this, we also calculated the number of times
an algorithm outperformed another algorithm for each trait across the
replicates. Using this metric, we were able to identify algorithms that
consistently outperformed others for a given trait/species combination
(Figure 5C, Figure S4). We frequently observed that linear algorithms
had higher win percentages than nonlinear algorithms, this was the case
for all three traits in maize and soybean for example (Figure S4). How-
ever, there were plenty of exceptions. RF and SVRrbf had higher win

Figure 4 Description and performance results of the
seeded ANN approach. (A) An overview of the seeded
ANN approach. The network in the top left is an
example of a fully connected ANN with 6 input nodes
(i.e., 6 markers), two hidden layers, and one output
layer (i.e., predicted trait value). The blue node in the
first hidden layer represents an example node that will
have seeded weights. For this node, the weights (w)
connecting each input node to the hidden node will
be seeded from the coefficient/importance for each
marker as determined by another GP algorithm using
the training data. b: bias, which helps control the value
at which the activation function will trigger. (B) The
distribution of model performance (r) using only all
random (None) or 25% seeded (rrBLUP, BayesB, BL,
RF) weight initialization, and convolutional neural net-
works (CNNs). The mean performance of the overall
top performing algorithm (i.e., not necessary ANN)
shown as dotted red line.
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percentages than linear algorithms for predicting height and diameter
at breast height (DBH) in spruce and ANNBB had a higher win per-
centage than all algorithms except BA and BB for predicting flowering
time in rice (Figure S3). In a few cases, assessing win percentages
allowed us to identify winners when mean predictive performance
(r) was tied. For example, for predicting height in switchgrass. SVRpoly
had the same average performance (r = 0.61) as multiple of the linear
algorithms (i.e., rrBLUP, BA, etc.), however, it outperformed those
algorithms in 70–80% of replicates (Figure 5C).

In order to determine which algorithms perform similarly, we
performed hierarchical clustering of the algorithms based on their

performance across the 18 species/trait combinations (from Figure 5A).
Interestingly, linear and non-linear algorithms did not clearly separate
from each other (Figure 5D). For example, rrBLUP and SVRlin were
more similar to the neural network based models (i.e., CNN and
ANNBB), than they were to the linear Bayesian algorithms (i.e., BA,
BB, BL, and BRR). Notably, while the Bayesian algorithms tended to
cluster together closely performance-wise, the non-linear algo-
rithms tended to have a greater distance between them. Finally,
in order to identify if algorithm performance was similar for specific
types of traits (e.g., whether similar algorithms performwell at predicting
traits related to developmental timing) or across species/population

Figure 5 Comparison of algorithms for predicting additional traits. (A) Mean model performance (r; text) for each species/trait combination
(y-axis) for each GP algorithm (x-axis). White text: r of the best performing algorithm(s) for a species. Colored boxes: percent of best
performance (r) for a species, with the top algorithm for each species = 100% (red). The median % of best performance for each GP
algorithm for each type of trait (i.e., height, developmental timing, yield, other) is shown below each heatmap. GM: sorghum grain moisture.
DBH and DE: diameter at breast height and wood density, respectively, for spruce. ST: standability for switchgrass. (B) Top left: summary of
the number of species/trait combinations that were predicted best by an ensemble (gray) or a non-ensemble model (yellow), or predicted
equally well by both (purple). Bottom right: among non-ensemble models that performed or tied for the best, the number of species/trait
combinations that were predicted best by a linear (blue) or a non-linear model (green) or predicted equally well by both (orange). (C) Percent
of replicates where one GP algorithm (y-axis, winner) outperformed another GP algorithm (x-axis, loser) for predicting height in switchgrass.
Orange and cyan texts: linear and non-linear algorithms, respectively. (D) Hierarchical clustering of GP algorithms based on mean predictive
performance across all species/trait combinations. Algorithm colored as in (C).
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composition (e.g., whether similar algorithms perform well on diversity
panels), we performed hierarchical clustering of each species/trait based
on performance of all 14 algorithms (from Figure 5A). Surprisingly,
species/trait combinations with similar patterns of algorithm per-
formance were often not the same species, trait, or population type
(Figure S5), suggesting that we cannot generalize easily the differ-
ences in performance based on species, trait, or population type.

DISCUSSION
We conducted a benchmarking comparison of GP algorithms on
18 species/trait combinations that differ in the type and size of the
training data set and of themarker data available. Similar to previous
GP algorithm benchmark studies conducted on smaller datasets
(Heslot et al. 2012; Blondel et al. 2015), a key result from this
analysis is that no one model performs best for all species and all
traits. We further demonstrate that, while similar algorithms per-
form similarly across the 18 species/trait combinations, algorithm
performance was not clearly related to the trait type or population
composition. With that said, linear algorithms tend to perform
consistently well, while the performance of non-linear algorithms
varied widely by trait. Studies of gene networks have shown that
non-additive interactions (e.g., epistasis, dominance) are important
for development and regulation of complex traits (Holland 2007;
Monir and Zhu 2018). One may expect approaches that can con-
sider non-linear combinations would therefore be better suited for
modeling complex trait. This was not the case and we found the
inconsistency of non-linear algorithms surprising.

We have three, non-mutually exclusive, explanations for why linear
algorithms often outperform non-linear algorithms. First, the traits
included in this study vary in their genetic architecture (i.e., the number
and distribution of allele effects), therefore we may be observing that
linear algorithms outperform non-linear algorithms when the trait has
a predominantly additive genetic basis. Second, there is evidence that
even highly complex biological systems generate allelic patterns that are
consistent with a linear, additive genetic model because of the discrete
nature of DNA variation and the fact that many markers have extreme
allele frequencies (Hill et al. 2008). The proportion of dominance and
epistatic variance that can be captured by an additive (i.e., linear)model
increases when allele frequencies are extreme (Hill et al. 2008). This
phenomenon is even more important with inbred lines (e.g., soy and
rice); where, at each locus there are only 2 possible variants (e.g., AA
and TT); thus, the additive model fully captures the single-locus genetic
variance. However, the fraction of epistatic variance that can be cap-
tured by an additive model depends on how many multi-locus geno-
types are present in the data and this depends on allele frequencies.
Thus, the distribution of allele frequency (which due to mutation,
selection, and drift is often enriched at extreme values) is one of the
reasons why additive models often capture and perform very well at
predicting traits that at the biological level are affected by complex
epistatic networks. Finally, a third explanation is that the amount of
training data available for most GP problems was insufficient for learn-
ing non-linear interactions between large numbers of markers, there-
fore the linear models, which focus on modeling linear relationships,
outperform the non-linear models.

Threefindings fromourstudysuggest that limited trainingdataplays
a role. First, we found that non-linear algorithms performed better at
predicting traits in species with a small marker number to population
size (p:n) ratio. For example, RF, SVRpoly, and SVRrbf performed best
at predicting traits in spruce and ANNmodels tended to perform better
at predicting traits in soy, the species with the second smallest
and smallest p:n, respectively. Second, the ANN models significantly

improved after feature selection. This was not the case for other algo-
rithms in our study or with previous efforts to use feature selection for
GP (Vazquez et al. 2010; Bermingham et al. 2015). For example, for
predicting traits in Holstein cattle, the top 2,000 markers had only 95%
of the predictive ability of all the markers using BL (Vazquez et al.
2010). With a fixed training data size, prediction accuracy is a function
of how much genetic variation is captured by markers in linkage dis-
equilibrium with quantitative trait loci and the accuracy of the esti-
mated effects (Goddard 2009). Because feature selection removes
markers from the model, such decreases in performance after fea-
ture selection for non-ANN models are likely due to the reduction
in the amount of genetic variation captured without a subsequent
increase in the accuracy of the estimated effects. However, we hypoth-
esize that feature selection significantly improved performance for
ANNs because it improved the accuracy of the estimated effects
(i.e., the connection weights) more than it reduced the amount of
genetic variation captured. Third, ANNs that have been trained on
small datasets often have unstable performance likely because
ANNs are sensitive to the initialized weight values when they do
not have enough training data to learn from (LeBaron andWeigend
1998; Shaikhina and Khovanova 2017). We observed greater insta-
bility in performance across replicates for ANNs compared to other
algorithms (Figure S2C-D), suggesting that our ANN models may
have benefitted from additional training data.

However, a recent study involving large sample size (n�80,000) in
humans compared linear models with two types of ANN algorithms,
multilayer perceptron and convolutional neural networks, and did not
find any clear superiority of the ANNmethods relative to linearmodels,
if anything the linear model offered higher predictive power than the
ANNs (Bellot et al. 2018). While they also found that feature selection
improved the performance of their ANN models, using the top 10k
of the 50k markers, these models still did not outperform the linear
models (Bellot et al. 2018). Given that these results are from a single
study in humans, we believe it will be informative to benchmark ANNs
on a larger crop dataset in the future.

While there is a great deal of excitement about the uses of deep
learning in the field of genetics, there is still much work to be done to
improve performance of deep learning-based models. In this study we
identifieddimensionality as amajor limitation to trainingANNs forGP.
Additional areas of deep learning research also need to be further
explored. For example, in this study we limited the ANN hyperpara-
meter space searched because the grid search method was too compu-
tationally intensive to be more thorough. Because changes in
hyperparameters had a large impact on model performance, further
hyperparameter tuning could lead to better performing models. For
example, we limited our search to include nine possible network
architectures with between one and three hidden layers each contain-
ing between 5-100 nodes (Table S2), but it is possible that ANNs with
different network architectures, such as more hidden layers, or dif-
ferent combinations of layer sizes, could have performed better.
Similarly, given that the hyperparameter space for CNN models
was only tested for one species and trait (height in rice), it is likely
that model-specific hyperparameter selection could improve the per-
formance of CNN models beyond what we were able to achieve here.

In summary, we provided a thorough comparison of 12 GP algo-
rithmsandtwoensembles forpredictingdiverse traits in sixplant species
with a range of marker types and numbers and population types and
sizes. We found that no GP algorithm was best for all species/trait
combinations and that trait type or population type were not closely
associated with which algorithms worked best. While neural network
approaches did not tend to outperform linear or other non-linear
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models, strategies to tailor neural networks for GP problems (e.g., non-
random initialization of stating weights, convolutional and pooling
layers) show promise. Unlike previous GP algorithm benchmark stud-
ies (Heslot et al. 2012), we found that the performance of ensemble
models, generated by combining predictions from multiple individual
GP algorithms, consistently tied with or exceeded the performance of
the best individual algorithm. Taken together, these finds lead us to rec-
ommend that breeders test the performance of multiple algorithms on
their training population to identify which algorithm or combination of
algorithms performs best for traits important to their breeding program.
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