Biofeedback in Breast Cancer Rehabilitation: Applying the WHO ICF Core Set to Identify Opportunities and Recommendations

Louise Brennan
Beacon Hospital,
Dublin, Ireland
Insight Centre for Data Analytics
University College Dublin,
louise.brennan@ucdconnect.ie

Enrique Dorronzoro Zubiete
Department of Electronic Technology, Universidad de Sevilla,
Seville, Spain
Enriquedz@dte.us.es

Brian Caulfield
Insight Centre for Data Analytics
University College Dublin,
b.caulfield@ucd.ie

Abstract—Digital biofeedback technologies are used in physical rehabilitation to improve motor learning and enhance engagement with therapies, but they are infrequently used in breast cancer rehabilitation. Digital biofeedback interventions should be custom-made for the specific breast cancer context. The WHO ICF Core Set for Breast Cancer describes this context by itemising the biopsychosocial and environmental factors associated with breast cancer. We analysed this Core Set to identify opportunities for biofeedback intervention, and to make recommendations for successful, inclusive design of digital biofeedback interventions in breast cancer rehabilitation. Impairments of strength, joint movement and upper limb function present opportunities for the development of digital biofeedback interventions. Factors related to sensory loss, lymphoedema, chemotherapy-related cognitive dysfunction and fatigue should be considered when designing and evaluating biofeedback systems.

Keywords—biofeedback, breast cancer, rehabilitation, technology

I. INTRODUCTION

Rehabilitation technology and digital interventions with sensor-enabled biofeedback are increasingly used as adjuncts to physiotherapy treatment as they can improve motor learning, enhance engagement with therapy and facilitate data-driven models of care [1,2]. Biofeedback in rehabilitation is the process of providing patients with additional information regarding a specific body function, allowing them to then self-regulate this function [3,4]. An external sensor collects biological information, which is then relayed back to the user. To ensure the biofeedback intervention suits a particular user or task, several features should be considered. For example, biofeedback can be of a visual, audio, haptic or multi-modal format. Additionally, information can be represented either directly, for example the visualisation of heart rate as beats per minute, or in an abstract manner, such as through a gamified interface or sonification of movement [1,5].

Digital biofeedback interventions [DBI] are widely used by physiotherapists in physical rehabilitation, and are well-established in the fields of gait re-education, balance training, musculoskeletal rehabilitation and stroke rehabilitation [6–8]. In breast cancer care, biofeedback is commonly used in radiation therapy [9,10], and has been applied as a psychological intervention [11], but only a few studies have investigated using it in physical rehabilitation [12,13]. Physical rehabilitation, including physiotherapy treatment, is acknowledged as a key component of care during treatment for breast cancer [14,15], addressing impairments such as joint pain or stiffness, lymphoedema, and local or global muscle weakness. These impairments occur in other medical conditions, such as CVA and osteoarthritis, where they can be treated with already-existing biofeedback interventions. However, the personal, medical, social and environmental contexts surrounding these impairments can be vastly different in breast cancer, requiring custom-made biofeedback interventions for this condition. To inform the development of such interventions, thorough recommendations which consider the full biopsychosocial and environmental contexts of individuals with breast cancer are needed.

The World Health Organization's [WHO] International Classification of Functioning, Disability and Health [ICF] is a globally accepted framework for understanding and describing functioning and disability for clinical, research, public health and policy uses [16,17]. The structure of the ICF [figure 1], with its four components each consisting of many pre-defined categories, covers the full biopsychosocial spectrum of health and allows it to act as a common international language for describing the impact of a health condition.

Using this framework, Brach et al. [18] developed a list of essential categories that are relevant for breast cancer. This list, called the ICF Core Set for Breast Cancer, was then validated from the perspective of physiotherapists by Glaessal et al. [19] and from the perspective of women with breast cancer by Cooney et al. [20]. These studies recommended the inclusion of several additional categories to the ICF Core Set, resulting in a fully comprehensive set of factors to consult when designing a biofeedback intervention for use in breast cancer rehabilitation. Notably, these factors will not be present in all patients, and their presence will vary greatly between individuals with breast cancer.

This paper firstly aims to analyse the ICF Core Set for Breast Cancer [comprising both the original Core Set and the recommendations from Glaessal et al. and Cooney et al.] to identify the opportunities for biofeedback-based interventions. We will then make recommendations for the design of biofeedback interventions in breast cancer rehabilitation using the ICF component headings i. Body Function and Body Structure, ii. Activity and Participation, iii. Environmental Factors.
TABLE 1

<table>
<thead>
<tr>
<th>ICF Category</th>
<th>Impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensation of pain</td>
<td>Pain – shoulder girdle and arm, global</td>
</tr>
<tr>
<td>Functions of lymphatic vessels</td>
<td>Lymphoedema, impaired lymphatic function</td>
</tr>
<tr>
<td>Exercise tolerance function</td>
<td>Poor exercise tolerance, fatigue</td>
</tr>
<tr>
<td>Weight maintenance functions</td>
<td>Weight gain / loss, difficulty managing weight</td>
</tr>
<tr>
<td>Mobility of joint functions</td>
<td>Reduced joint range of movement, joint stiffness</td>
</tr>
<tr>
<td>Mobility of bone functions</td>
<td>Reduced joint range of movement, joint stiffness</td>
</tr>
<tr>
<td>Muscle endurance functions</td>
<td>Muscle weakness upper limb, muscle weakness global, poor exercise tolerance, fatigue</td>
</tr>
<tr>
<td>Sensations related to muscles and movement functions</td>
<td>Muscle stiffness</td>
</tr>
<tr>
<td>Structure of upper extremity</td>
<td>Muscle loss, posture</td>
</tr>
<tr>
<td>Hand and arm use</td>
<td>Reduced upper limb [UL] function, difficulty with activities of daily living using UL</td>
</tr>
<tr>
<td>Fine hand use</td>
<td>Reduced power, lymphoedema</td>
</tr>
</tbody>
</table>

B. Sensory Functions

Impairments of touch, hearing and seeing functions can occur during treatment for breast cancer [20, 29]. Accessibly designed biofeedback can compensate for sensory loss, allowing all users to benefit equally from the technology [27, 28]. Sensory modes should be easily interchangeable, so that a user with visual impairment may receive audio feedback, and vice-versa. Where visual feedback is required, this communication can be reinforced using conventional metaphors such as applying a green or red colour to indicate when is goal is, or is not, achieved. Use of dimensions of sound (e.g. volume, pitch, tone) and vision (e.g. contrast sensitivity, visual acuity, colour perception) should be explored so information is relayed with maximum clarity.

Chemotherapy-induced peripheral neuropathy is a commonly occurring long-term side effect of breast cancer treatment, characteristic by numbness, pins and needles and pain in the hands and feet [29]. Manual data entry and other tasks which require fully intact peripheral somatosensory systems should be avoided. Post-operative pain may limit a patient’s ability to complete rehabilitation exercises and to interact with the DBI [30]. Inclusion of a pain assessment tool in the system can enable the feedback to be adapted appropriately to the patient’s pain level. Provocation of pain can be avoided by using external sensors which are lightweight, non-invasive and suitably located on the body. Garments imbedded with miniature movement sensors have been used in ergonomic biofeedback systems for stroke rehabilitation [31], and further studies have utilised the Microsoft Kinect, which contains an RGB camera and depth sensor, thus removing the need for any wearable hardware [32].
C. Neuromusculoskeletal and Movement Functions

Individuals with breast cancer experience impairments in mobility of joints, muscle power and muscle endurance, especially in the immediate post-operative period [31]. Neuromusculoskeletal functions typically improve post-operatively, but this improvement is not always linear, and patients’ abilities fluctuate due to factors such as pain and fatigue [32]. DBIs for breast cancer rehabilitation need to provide personalised feedback, which will be responsive to changes in neuromusculoskeletal abilities. A system which, for example, detects a loss of range of movement and reports this to a patient without considering other contextual factors may cause distress or encourage the patient to push beyond acceptable boundaries. Equally, it may result in abandonment of the system, and possibly the rehabilitation programme, due to loss of trust from the patient. Therefore, it is imperative that these systems meet national regulations for medical devices and that they employ accurate data analytics [32,33]. Crucially, it is recommended that biofeedback systems are prescribed by healthcare professionals and operate as adjuncts to holistic professional treatment.

D. Immunological and Respiratory Functions

Lymphoedema is prevalent in 5 - 55% of individuals with breast cancer, depending on treatments received [33], and can lead to pain, weakness and numbness in the upper limb, a reduction in upper limb function and a deterioration in quality of life [34]. As mentioned in section iii, DBIs should be responsive to changes in health status and should be used alongside a qualified healthcare professional who can monitor lymphoedema and provide advice as needed. Somatosensory loss and body image concerns which may accompany lymphoedema are discussed in sections iiib and iiiia respectively.

Adjuvant treatments for breast cancer can negatively impact cardio-pulmonary function, causing reduced exercise tolerance [35]. Individuals with breast cancer are recommended to partake in regular exercise to improve the negative physical and psychological sequelae of breast cancer treatment, and biofeedback systems can enhance this by monitoring activity levels, providing positive feedback and promoting goal attainment [36]. The systems should use discreet physiological sensors to monitor heart rate and respiratory rate [22] over time and provide suitable feedback if they exceed, or do not meet, recommended levels. Using the DBI to collect information on rate of perceived exertion during exercise and post-exercise energy levels will provide the patient and healthcare professional with a data set from which to make recommendations for future exercise sessions.

IV. Recommendations: Activity and Participation

The categories within the ‘Activity and Participation’ component concern how impairments can lead to limitations in activity and restrictions in participating in all areas of life. Activities involving coordinated, purposeful actions with the arm and hand can be limited. Therefore, external sensors and interface devices must be lightweight and easy to manipulate so as not to further impair a person’s ability to participate in exercises. To facilitate activity of rehabilitation in daily life, some users may benefit from biofeedback technology which can sync with their smart phone calendar to deliver scheduled reminders to perform their exercise programme.

Rehabilitation is more meaningful and effective when related to a patient’s activity- and participation-related goals. Research using wearable sensors to analyse upper limb movement during activities of daily living in both healthy populations and in neurological conditions has strong potential to be applied to creating BDIs in breast cancer [37–39]. Sport-specific biofeedback has been developed for golf, basketball and rowing [40–42], and this approach can be incorporated into a rehabilitation programme for individuals with breast cancer aiming to return to sports.

V. Recommendations: Environmental Factors

To minimise disruption and optimise adherence, biofeedback systems should fit into user’s physical environments in a natural, unobtrusive manner. An example of this is the use of inertial measurement units in mobile phones for activity recognition [43]. However, while the portability and ubiquity of smart phones is an advantage, allowing for enhanced data collection, their screen size is small and users with visual impairments may benefit from a web application which they can access on a large PC monitor. Healthcare professionals or systems can increase communication with patients by viewing progress, providing feedback, and conducting telerehabilitation sessions remotely through the DBI. This can improve accessibility in instances of geographical, financial or temporal barriers.

VI. Conclusion

DBIs can be used to enhance physical rehabilitation but have not been yet been widely applied in breast cancer rehabilitation. Biofeedback technologies should be designed specifically for use in the complex biopsychosocial context of breast cancer, as described by the WHO ICF Core Set for Breast Cancer. Impairments in body functions, limitations in activities and participation restrictions can be opportunities for the use of biofeedback, and/or factors to consider when designing DBIs. These recommendations aim to improve usability, enhance engagement with the technology, foster accessibility and ultimately optimise rehabilitation outcomes.

ACKNOWLEDGMENT

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 722012. Enrique Dorronzor receives funding and is supported by the V Plan Propio de Investigación de la Universidad de Sevilla, Spain.

REFERENCES

