An Efficient Dispatch and Decision-making System for Taxi Booking Service

Insight Centre of Data Analytics

University College Cork

Cheng Qiao, Ken Brown
Outline

1. Motivation
2. Model
3. Methodologies
4. Evaluation
5. Conclusion
Motivation

- **Rush Hour**
 - Limited taxicabs VS Many passengers need service

- **Non-rush Hour**
 - Abundant taxicabs VS Few urgent passengers
Solution Proposed So Far

- **Taxi-booking service**
 - Phone for taxi service in advance or in real time
 → Cumbersome maintenance and low success rate

- **Recommender system**
 - Recommend best places to wait for passengers based on historical location information
 → Do not handle the latest dynamic information.
In this paper

- We presented a systematic study of driver and passenger preference.

- We propose an evolutionary game approach to optimise the drivers’ revenue and passengers’ cost.

- An efficient dispatch model is proposed.
Preference learning

- **Passengers are willing to phone for taxi service:**
 - During rush hours, or
 - Location is remote and few taxis are available

- **Drivers prefer passengers that:**
 - Request a long-distance ride, or
 - Whose destination area is one of the driver’s preferred areas

![Diagram](image)
Model

- Reservation System
Model

- Architecture
Strategies

- Scene.

S_{D2}: stick by driving plan

(E', L_1, P_1)

(E, L_2)
Methodologies

- **Driver’s Preference E:** the knowledge level of the area
- **Utility Definition**
 - The driver’s utility function mainly contains three aspects: the time cost to locate passengers, the current trip and the next trip after reaching the destination. More formally:

 \[U_D = U_{\text{tim}} + U_{\text{cur}} + U_{\text{nex}} \]

 - Passengers’ utility is the waiting time.
Research Problems

Under what circumstances are:

- the drivers willing to pick up the passengers?
- the passengers willing to wait for the taxi?
Evolutionary Game Theory

Model

- The drivers has two pure strategies:
 - Pick up the passengers within the limited time
 - Ignore the service request and stick to the driving plan
- The passengers has two pure strategies:
 - Wait until the taxi comes
 - Get in a taxi that passes by
Evolutionary Game Theory

- **Parameter Setting**
 - *Parameter based on historical data:*
 - Average occupied driving distance
 - Expected occupied driving distance after deal has completed
 - The probability that a taxi come across available passengers
 - *Parameter provided by the passengers:*
 - Driving distance, destination area.
Evolutionary Game Theory

Model

TABLE II: Game model encompassing the strategies

<table>
<thead>
<tr>
<th>Driver</th>
<th>Passenger</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$P_1(y)$</td>
</tr>
<tr>
<td></td>
<td>$P_2(1 - y)$</td>
</tr>
<tr>
<td>$D_1(x)$</td>
<td>(U_{11}, V_{11})</td>
</tr>
<tr>
<td>$D_2(1 - x)$</td>
<td>(U_{21}, V_{12})</td>
</tr>
<tr>
<td></td>
<td>(U_{12}, V_{21})</td>
</tr>
<tr>
<td></td>
<td>(U_{22}, V_{22})</td>
</tr>
</tbody>
</table>
Evolutionary Game Theory

- **Evolutionary Stable Strategy:**
 - A ESS is a strategy which if adopted by all members of a population cannot be invaded by a mutant strategy through the operation of natural selection.
Evolutionary Game Theory

- **Compute the Equilibrium**
 - We use the standard Jacobian Matrix to obtain the ESS values here.
 - Any solution pair that satisfies the following conditions is an ESS of the game:

\[
Tr(J) < 0, \ det(J) > 0
\]
Evolutionary Game Theory

- **Theorem 1**: No matter what actions the passengers will make, the driver's optimal actions are picking up the passengers if the following formula holds:

\[
E \geq \max \left(\frac{(1-P_c)(E'fL_2 + fL - fL^*) + LC_1}{L_2f(1-P_c)}, \frac{L_1-L^* + E'L_2}{L_2} - \frac{LC_1}{fL_2} \right)
\]

- **Theorem 2**: Without outside incentive, when shortest-path matching is applied by the driver, the passenger’s optimal action is waiting until the taxi comes, if the following formula holds:

\[
w \geq w_e
\]
GPS Data

<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
<th>Time</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Altitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>B341W1</td>
<td>2011-08-31</td>
<td>23:50:49</td>
<td>1,140</td>
<td>315</td>
<td>22.564898</td>
</tr>
<tr>
<td>B341W1</td>
<td>2011-08-31</td>
<td>23:49:29</td>
<td>1,0</td>
<td>315</td>
<td>22.563587</td>
</tr>
<tr>
<td>B052U3</td>
<td>2011-08-31</td>
<td>23:58:46</td>
<td>1,83</td>
<td>0</td>
<td>22.604458</td>
</tr>
<tr>
<td>B49F11</td>
<td>2011-08-31</td>
<td>23:58:46</td>
<td>0,0</td>
<td>315</td>
<td>22.536747</td>
</tr>
<tr>
<td>B43F98</td>
<td>2011-08-31</td>
<td>23:58:46</td>
<td>0,65</td>
<td>90</td>
<td>22.566208</td>
</tr>
<tr>
<td>B0272D</td>
<td>2011-08-31</td>
<td>23:58:46</td>
<td>0,180</td>
<td>22.583893</td>
<td>113.949501</td>
</tr>
<tr>
<td>B537W1</td>
<td>2011-08-31</td>
<td>23:58:42</td>
<td>0,41</td>
<td>135</td>
<td>22.656878</td>
</tr>
<tr>
<td>B64F40</td>
<td>2011-08-31</td>
<td>23:58:44</td>
<td>0,90</td>
<td>22.561001</td>
<td>114.06633</td>
</tr>
<tr>
<td>B3247B</td>
<td>2011-08-31</td>
<td>23:58:44</td>
<td>0,0</td>
<td>22.521267</td>
<td>113.931114</td>
</tr>
<tr>
<td>B09T80</td>
<td>2011-08-31</td>
<td>23:58:44</td>
<td>0,90</td>
<td>22.521767</td>
<td>114.031464</td>
</tr>
<tr>
<td>BYW802</td>
<td>2011-08-31</td>
<td>23:58:27</td>
<td>0,18</td>
<td>135</td>
<td>22.564917</td>
</tr>
<tr>
<td>BA1C94</td>
<td>2011-08-31</td>
<td>23:58:44</td>
<td>1,15</td>
<td>135</td>
<td>22.522783</td>
</tr>
<tr>
<td>B074U1</td>
<td>2011-08-31</td>
<td>23:54:03</td>
<td>0,29</td>
<td>315</td>
<td>22.611082</td>
</tr>
<tr>
<td>B75M61</td>
<td>2011-08-31</td>
<td>23:58:44</td>
<td>1,0</td>
<td>180</td>
<td>22.523968</td>
</tr>
<tr>
<td>B631W0</td>
<td>2011-08-31</td>
<td>23:58:45</td>
<td>1,0</td>
<td>315</td>
<td>22.599421</td>
</tr>
<tr>
<td>B835W2</td>
<td>2011-08-31</td>
<td>23:58:43</td>
<td>1,0</td>
<td>135</td>
<td>22.544718</td>
</tr>
<tr>
<td>B79F15</td>
<td>2011-08-31</td>
<td>23:58:44</td>
<td>0,15</td>
<td>225</td>
<td>22.549183</td>
</tr>
<tr>
<td>B47N71</td>
<td>2011-08-31</td>
<td>23:58:44</td>
<td>0,8</td>
<td>225</td>
<td>22.697416</td>
</tr>
<tr>
<td>B80X73</td>
<td>2011-08-31</td>
<td>23:58:44</td>
<td>0,0</td>
<td>135</td>
<td>22.556032</td>
</tr>
<tr>
<td>B356R7</td>
<td>2011-08-31</td>
<td>23:58:45</td>
<td>0,0</td>
<td>225</td>
<td>22.559566</td>
</tr>
<tr>
<td>B76G36</td>
<td>2011-08-31</td>
<td>23:58:42</td>
<td>1,0</td>
<td>135</td>
<td>22.557966</td>
</tr>
<tr>
<td>B94N29</td>
<td>2011-08-31</td>
<td>23:58:43</td>
<td>1,0</td>
<td>135</td>
<td>22.623516</td>
</tr>
<tr>
<td>B94N29</td>
<td>2011-08-31</td>
<td>23:58:45</td>
<td>0,0</td>
<td>135</td>
<td>22.623516</td>
</tr>
<tr>
<td>B21V37</td>
<td>2011-08-31</td>
<td>23:58:39</td>
<td>1,5</td>
<td>180</td>
<td>22.537451</td>
</tr>
<tr>
<td>B98F49</td>
<td>2011-08-31</td>
<td>23:58:44</td>
<td>0,0</td>
<td>225</td>
<td>22.537333</td>
</tr>
<tr>
<td>B68K71</td>
<td>2011-08-31</td>
<td>23:58:44</td>
<td>0,10</td>
<td>135</td>
<td>22.552233</td>
</tr>
<tr>
<td>BA5G36</td>
<td>2011-08-31</td>
<td>23:58:44</td>
<td>1,54</td>
<td>45</td>
<td>22.5373</td>
</tr>
<tr>
<td>B803W6</td>
<td>2011-08-31</td>
<td>23:58:44</td>
<td>0,52</td>
<td>225</td>
<td>22.632383</td>
</tr>
</tbody>
</table>
GPS data Shown on the Map
GPS data Shown on the Map
Preparatory Phase before Simulation

- **Assumption**
 - We assume that a passenger has already been waiting there when a taxicab switched from cruising to occupied (0→1).
 - It is difficult to confirm the exact arriving time.
 - We set the observation time to be 5 minutes.
 - The sparseness and low-sampling-rate of the taxi trajectories discourage us to model it with a less than 5 minutes flow.
 - Passengers still appear to be unwilling to wait longer than 5 minutes.
Any Improvement?

- When passengers’ information are involved, we use the shortest-path route to calculate the distance and get the time consumption to pick up the passengers.
Evaluation

- *Improvement*

Fig. 7. Time consumption to locate passengers
Evaluation

- Suppose that a passenger send a request in 22:00 and his/her destination is 12 kilometer away, should the drivers pick up the passengers?
Convergence

- Convergence of participant
Convergence

- Average occupied driving distance and preference E affect drivers’ final decision.
- The higher the preference E of the destination, the more driver is willing to pick up the passengers.

![Critical convergence line](image)
Optimal Decision

For a driver with a preference $E=0.8$ and average occupied driving distance $L=12$, the optimal strategy is to follow CRS's guide and pick up the passenger.
Driver’s Profit

- As the percentage of drivers who accept a match increases, the profit the drivers will gain increases.

![Graph showing profit vs. percentage](image)

Fig. 11: Profit
How to dispatch taxi?

- After the driver send their willingness to pick up passengers to PC, how to dispatch a taxi when two or more taxis are in close proximity according to GPS information?
 - Willingness of drivers
 - Location of all participants
Shortest Path

- Shortest Path Route by Arcgis
Shortest Path

- Advantage by using Arcgis: identify the bad data
Conclusion

- **Dispatch Algorithm**

Algorithm 1 MDP

1. Let I_{ij} be shortest distance of unoccupied taxi i to available passenger j.
2. Let $W_{ij} \in [0, 1]$ be the willingness of driver i to pick up the passenger j.
3. Let $s = \text{argmin}(I_{ij} + \alpha W_{ij})$ that α is a parameter that balance the magnitude unit.
4. **if** no such s exists **then**.
5. random assign the chance to a driver .
6. **else**
7. assign the chance to the driver that subject to s.
8. **end if**
Comparison

- OMOR: Taxi could earn more by waiting in parking places, rather than cruising.
 - Detect parking places
 - Using a probabilistic model to calculate how likely the driver would be to pick up a passenger
Conclusion

- Comparing with the ground truth, our CRS system can:
 - The dispatch model could reduce time consumption to located passengers from 2% to as much as 46%.
 - The Game model could increase at least 18% of driver profit.
 - Lower the passengers’ waiting time.
Thanks!
Any Questions?