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Abstract

The latent factor methods and explanation algorithms con-
stitute the foundation of many advanced explainable recom-
mender systems. However, interpreting the high-dimensional
latent factors has not been sufficiently addressed and continu-
ously becomes a challenging work. Besides, only a few works
have researched the use of explanation to improve recommen-
dations. In this paper, we propose a deep learning method that
generates high-quality latent factor-based explanations and
efficiently ameliorating recommendations. We conduct top-
K items ranking experiment on two real-world datasets and
show that our method outperforms nine currently state-of-the-
art recommender systems in five ranking metrics. Moreover,
we conduct a qualitative and quantitative analysis of users’ la-
tent factors and reveal that we continually offer the best latent
representations.

Introduction
Latent factorisation methods play a vital role in the
metabolism of recommender systems. From early works
(Strang 1993; Lee and Seung 2001) to recent advanced
neural networks (Wang et al. 2018; Ouyang and Lawlor
2019). At the same time, the process of providing explana-
tions for recommendations also receives substantial atten-
tion (Tintarev and Masthoff 2015). However, making inter-
pretations of latent factors remains a major challenge, where
the main challenge is that it is difficult to explain high-
dimensional abstract numeric. The successful work that
solved this problem is NEAR (Ouyang and Lawlor 2019),
which aims to figure out the most important factor for users
as the explanation. Nevertheless, finding out just one latent
factor is not enough. Moreover, the interpretation generation
process of NEAR is inefficient and expensive. As such, the
first problem this paper aims to address is providing an effec-
tive approach to generate explanations for all latent factors
of both users and items.

On the other hand, most explanation works (Lacic,
Kowald, and Lex 2016; Costa et al. 2018) concentrate on
investigating the value of trust and fairness of interpretation
but neglect the affiliation between recommendation and ex-
planation. The recommendation explanations are designed
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to serve recommender systems. It can endow persuasive-
ness to recommender systems, and it also can make recom-
mender systems to be more precise. The most recent work
that uses explanations to strength recommendations is (Wu
et al. 2019), which critiques interpretations when making
predictions. Nevertheless, their method critiques explana-
tions in the inference step instead of learns the critiqued out-
comes in the training step. Therefore, the next goal for this
paper is building a feasible training fashion to contribute to
the area of using explanations to improve recommendation.

In this paper, we borrow the idea of NEAR and pro-
pose a latent factor-based explanation generation algorithm
through deep neural networks. Besides, we introduce a new
manner of utilising interpretations to train recommender sys-
tems. Experimental results show that we surpass nine base-
lines and attain the state-of-the-art performance in top-K
item ranking. We also qualitatively and quantitatively anal-
yse the quality of users’ latent representations and demon-
strate that our method can learn superior latent embeddings
than baselines.

Related Work
The definition of the term explanation has not been unified.
According to the overview of(Guidotti et al. 2018), the no-
tion of explanation is encompassed in two parts: global in-
terpretability and local explainability. The first concept pro-
vides a general understanding of the inner logic of a trans-
parent system, for example, Frosst et al.(Frosst and Hinton
2017) explained neural networks through a path of a soft
decision tree. By contrast, the second idea aims to find the
reasons for predictions from opaque intelligent systems. In
this vein, Ribeiro et al.(Ribeiro, Singh, and Guestrin 2016)
proposed a local interpretable model-agnostic explanation,
which named as LIME, to faithfully interpret classifications.
Wu et al.(Wu et al. 2019) introduced a method jointly learn-
ing the recommendations and key-phrase interpretations si-
multaneously. For the explanation in this paper, we are in-
terested in explaining recommendations locally.

There have been many longitudinal studies involving lo-
cal interpretation which have reported that the feature selec-
tion plays a critical role in the maintenance of locally ex-
planation generation. The target of this technology is identi-
fying the features with the highest relevance to an agnostic
prediction. Geng et al.(Geng et al. 2007) addressed redun-



dant selection problem when selecting features, by consid-
ering similarities between features. Lai et al.(Lai et al. 2013)
proposed a joint convex optimization method that minimises
ranking errors and conducting feature selection simultane-
ously. In addition to distance algorithms, other statistical al-
gorithms and machine learning models are employed in this
topic (Li et al. 2018). For example, the principal component
analysis method is commonly used in this topic (Yu and Liu
2003). Besides, Recent evidence suggests that deep learning
techniques can grasp personal features accurately (Costa et
al. 2018). Unlike the above works, which conduct explana-
tions on visible features, generating explanations on latent
factors is more complicated, because a latent factor is just a
digital number. To do so, we are not attempting to explain
a numeric number, but rather to make the factor selection
exposing the connection between latent factors and recom-
mendations.

The recommendation explanation is different from the ex-
planation of other methods. The initial goal of recommen-
dation interpretation is to persuade customers to believe the
recommendation (Tintarev and Masthoff 2011). In the past
decade, several researchers have sought to determine how to
produce recommendation interpretation. Vig et al.(Vig, Sen,
and Riedl 2009) used community tags to explain related rec-
ommendations. Symeonidis et al.(Symeonidis, Nanopoulos,
and Manolopoulos 2009) introduced an approach that us-
ing users’ feature similarity and rating similarity to provide
interpretation. Besides heuristic and tag data, using review
data is also an alternative. Lacic et al.(Lacic, Kowald, and
Lex 2016) exploited the most contributed features of air-
line reviews and promoted travelers’ satisfaction. Chen et
al.(Chen and Wang 2017) proposed an explainable recom-
mender system that supplies interpretation by feature senti-
ments in product reviews. Costa et al.(Costa et al. 2018) in-
dicated an alternative approach, machine-generated reviews,
to offer recommendation explanations. Recently, some other
works believe explanation can also be used to modify recom-
mendation behavior. NEAR (Ouyang and Lawlor 2019) gen-
erated perturbed user embeddings by their latent factor ex-
planation, and improved recommendation performance. Wu
et al.(Wu et al. 2019) introduced an explanation critiquing
process for deep neural network-based recommender sys-
tems showing valuable enhancement for recommendations.

However, the work of generating explanations on latent
factors has not been thoroughly addressed. Also, few works
have integrated the explanation into the training step of rec-
ommender systems for advanced recommendation perfor-
mance. As such, This research sheds new light on reforming
recommendation behavior through latent factor-based expla-
nation.

Proposed Method
In this paper, we develop the current latent explanation gen-
erator NEAR(Ouyang and Lawlor 2019) by neural networks
and propose a new fashion to reform recommendation be-
havior. We name our method as R-NEAR. Comparing with
NEAR, we argue that R-NEAR can learn more productive
information and produce more meaningful factor-based ex-
planations and lead to more precise recommendations. In-
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Figure 1: The proposed R-NEAR model. We produce latent
factor based explanation and use these interpretations to re-
form recommender systems. Here, the inputs to our method
are the user representationUi and the item representation Vj ,
while the outputs are user explainable weightsWU

i , item ex-
plainable weights WV

j , and the promoted recommendation
rating r′(i,j).

trinsically, our method works on the latent embedding to
identify the latent connections and plays as an extension sys-
tem to any latent embedding based recommender systems,
as shown in Figure 1. We category our methods into two
modules: explanation generation and rectify recommenda-
tion. The first module aims to generate explanations, while
the second one targets on reforming recommendation per-
formance. In the following sections, we start to discuss the
basic unexplained prediction approach of latent factor-based
recommendation methods, which provides the general intu-
ition of why our method is needed. Next, we introduce how
to generate interpretations by the latent factors of recom-
mender systems. We then outline how to ameliorate recom-
mendations by the interpretations.

Non-explainable Recommendation
In this section, we summarise the general way of factorised
methods to make predictions and discuss how we can make
explanations on latent factors. In latent embedding based
methods, the observed user i and item j are first encoded
into N dimensional vector embedding Ui and Vj . Here,
U ∈ RP×N is the user embedding matrix, V ∈ RQ×N

is the item embedding matrix, where P andQ represents the
number of total users and items respectively. To produce a
recommendation, general factorisation methods, for exam-
ple, matrix factorisation, make dot product on U − i and Vj
estimating the rating r̂i,j that the user i might gives to the
item j. We summarise this forward calculation as:

r̂(i,j) = UiVj (1)

In this computation, the high-dimensional latent represen-
tation Ui and Vj are the key aspects. Several works attempt
to make explanations on these latent factors, for example,
NEAR(Ouyang and Lawlor 2019) aims to find which fac-
tors are important as the interpretation. Nevertheless, NEAR
uses a brute-force method that detects the factor which car-
ries out the minimum recommendation loss, which is Inef-



ficient. Besides, it only updates one user factor at a time,
which is not enough to reform recommendations.

In this paper, we aim to provide exhaustive interpretation
on both the user and the item side. We introduce the user
explainable weights WU

i ∈ R1×N and item explainable
weights WV

j ∈ R1×N . The size of these weights equals the
size of embeddings of users and items. Similar to NEAR, the
values in these explainable weights reflect the importance
of corresponding latent factors. The higher value in WU

i or
WV

j , the more indispensable the related latent factor is, or
vice versa. We formulate the calculation procedure of user
explainable weights WU

i and item explainable weights WV
j

in the following equation.

WU
i ,W

V
j = fR−NEAR(Ui, Vj) (2)

Generate Explanation
We spread out the discussion of technical details of
fR−NEAR in this section. In order to model WU

i and WV
j ,

we propose the Multi-layer Neural Networks, since deep
learning methods are the representation-learning algorithm
that can learn excellent representations with multiple lev-
els. What is more, they magnify the important parts and
restrain irrelevances (LeCun, Bengio, and Hinton 2015),
which meets the demands of our purpose. In our method, we
employ fully connected neural networks. To learn more ab-
stract and comprehensive non-linear representation, we acti-
vate the hidden layer by theRelu activation. TheRelu func-
tion forces the output of unimportant units to be 0 to let the
network become sparse, and the neurons are less dependent,
and we can alleviate the over-fitting problem. We demon-
strate the calculation of the hidden layer in Equation 3. Here,
[, ] denotes the concatenation operation,Wh ∈ R2N×h is the
hidden weights, h is the number of hidden units, and bh is
the bias.

H(i,j) = Relu(Wh[Ui, Vj ] + bh) (3)

As aforementioned, the goal of our method is to learn the
latent relationship between the user-item pairs and the pre-
dicted rating, and presents these correlations on the user ex-
plainable weights WU

i and item explainable weights WV
j .

Therefore, we apply the predicted rating R̂i,j as the target of
the multi-layer neural networks. We stack a linear transfor-
mation layer on the hidden layer, due to the linear explana-
tions are proven to be faithful in many works(Ribeiro, Singh,
and Guestrin 2016; Ouyang and Lawlor 2019). We present
the computation of our explanation generation in Equation
4, where, o(i,j) is the estimation of recommended rating,
WUV ∈ R1×2N is the explainable weights. We then sepa-
rate explainable weightsWUV into user explainable weights
WU

i and item explainable weights WV
j by the embedding

size N .

o(i,j) =WUVH(i,j) + bo

WU
i ,W

V
j =WUV

:N ,WUV
N :

(4)

To train R-NEAR, we illustrate the proposed cost func-
tion in Equation 5. We measure the explanation loss by

the squared error between the prediction and the recom-
mended rating. Moreover, a recent explanation method sug-
gests L1 regularisation creates a sparse weight, which is
suitable for feature (factor) selection (Ribeiro, Singh, and
Guestrin 2016). Thus, we add a L1 regularisation on the ex-
plainable weights in this function.

JR−NEAR = (r̂i,j − o(i,j))2 + λ‖WUV ‖1 (5)

Improve Recommendation
A number of explanation works have reported different
ways to ameliorate recommendation behavior, for instance,
NEAR attempts to manually alter user embedding through
their factor-based explanation, Wu et al.(Wu et al. 2019) try
to learn recommendation and key-phrase explanation jointly.
However, these approaches are inefficient and can not be
scaled. In this section, we aim to offer some critical insights
into the process of improving recommendations by explana-
tion.

In the previous section, we have calculated the user ex-
plainable weights WU

i and item explainable weights WV
j .

On the one hand, the values in these weights indicate the
importance of each latent factor. On the other hand, the vi-
tal point of personalised recommendation is amplifying rel-
evant aspects and suppressing irrelevant variations. There-
fore, we argue that R-NEAR can make a more precise per-
sonalised recommendation through multiplying theWU

i and
WV

j with corresponded user embedding and item embed-
ding. We reveal this computation in Equation 6, where odot
denotes the element-wise product, U ′i and V ′j is the new em-
bedding of user i and item j, and r′(i,j) is the enhanced pre-
dicted rating. By doing this, our algorithm works as an ex-
tension to other recommender systems, which ensure strong
scalability and robustness.

U ′i = Ui �WU
i

V ′j = Vj �WV
j

r′(i,j) = U ′iV
′
j

(6)

In terms of learning the improvements for recommenda-
tions, we develop a new cost function for recommender sys-
tems. In our method, we apply the Root Mean Square Error
(RMSE), the most popular loss function in the recommen-
dation filed, to leverage the differentiation between recom-
mendation and ground truth. We show the loss function in
Equation 7, where r′(i,j) is the improved recommendation,
r(i,j) is the ground truth rating, and R is the possible user-
item pairs in training set.

Jrs =
√√√√ 1

R̂

∑
r̂i,j∈R̂

(r(i,j) − r′i,j)2 (7)

In this end, we can interactively update R-NEAR and rec-
ommender systems. Every time we train the recommender
systems, we can get more accurate predictions so that we can
get better explanations. Similarly, every time we train our
explanation system, we can achieve more significant factor



Model R-Precision NDCG MAP@5 MAP@10 MAP@20 Precision@5 Precision@10 Precision@20 Recall@5 Recall@10 Recall@20

NCF 0.0378 0.0824 0.0435 0.0394 0.0342 0.0396 0.0332 0.0266 0.0539 0.0907 0.1428

E-NCF 0.0392 0.0851 0.0449 0.0411 0.0356 0.0418 0.0349 0.0271 0.0579 0.0956 0.1456

CE-NCF 0.0401 0.0853 0.0458 0.0412 0.0354 0.0404 0.0344 0.0270 0.0576 0.0942 0.1447

VNCF 0.0372 0.0809 0.0408 0.0384 0.0341 0.0393 0.0337 0.0275 0.0526 0.0869 0.1415

E-VNCF 0.0376 0.0833 0.0436 0.0399 0.0351 0.0395 0.0344 0.0281 0.0511 0.0880 0.1446

CE-VNCF 0.0374 0.0827 0.0425 0.0398 0.0351 0.0398 0.0340 0.0281 0.0516 0.0904 0.1440

SVD 0.0275 0.0751 0.0564 0.0507 0.0436 0.0503 0.0418 0.0332 0.0563 0.0917 0.1421

SVD++ 0.0354 0.0763 0.0584 0.0509 0.0458 0.0509 0.0402 0.0335 0.0582 0.0938 0.1568

NEAR 0.0393 0.0824 0.0608 0.0550 0.0476 0.0547 0.0451 0.0369 0.0621 0.0986 0.1592

R-NEAR 0.0411 0.0835 0.0622 0.0555 0.0479 0.0548 0.0457 0.0370 0.0632 0.1011 0.1602

Table 1: Top-K item rank of Amazon CDs&Vinyl dataset.

Model R-Precision NDCG MAP@5 MAP@10 MAP@20 Precision@5 Precision@10 Precision@20 Recall@5 Recall@10 Recall@20

NCF 0.0603 0.1056 0.0808 0.0750 0.0679 0.0747 0.0661 0.0571 0.0530 0.0930 0.1534

E-NCF 0.0577 0.1025 0.0762 0.0715 0.0653 0.0718 0.0642 0.0561 0.0520 0.0907 0.1494

CE-NCF 0.0678 0.1259 0.0934 0.0881 0.0815 0.0878 0.0800 0.0709 0.0605 0.1086 0.1872

VNCF 0.0677 0.1248 0.0928 0.0879 0.0811 0.0874 0.0802 0.0704 0.0598 0.1080 0.1861

E-VNCF 0.0678 0.1259 0.0934 0.0881 0.0815 0.0878 0.0800 0.0708 0.0604 0.1086 0.1872

CE-VNCF 0.0716 0.1301 0.0920 0.0892 0.0834 0.0897 0.0839 0.0735 0.0628 0.1166 0.1974

SVD 0.0613 0.1204 0.1410 0.1299 0.1163 0.1290 0.1130 0.0958 0.0784 0.1321 0.2123

SVD++ 0.0622 0.1236 0.1423 0.1237 0.1072 0.1320 0.1089 0.0986 0.0797 0.1363 0.2138

NEAR 0.0728 0.1299 0.1495 0.1379 0.1237 0.1369 0.1194 0.1016 0.0847 0.1412 0.2250

R-NEAR 0.0734 0.1319 0.1506 0.1383 0.1238 0.1385 0.1205 0.1018 0.0856 0.1426 0.2265

Table 2: Top-K item rank of BeerAdvocate dataset.

selection so that we can achieve more precise recommenda-
tions.

Experiments
We now present the recommendation and explanation eval-
uation of our method to answer the following research ques-
tions:

• Can we show exception performance on Top-K items
ranking, comparing with other state-of-art recommender
systems?

• Can we provide high-quality personalised latent represen-
tation?

Experimental Settings
Datasets Our experiments are conducted on 2 real-world
datasets: Amazon CDs&Vinyl 1 (He and McAuley 2016)
and BeerAdvocate (McAuley and Leskovec 2013), where
the CD dataset contains 1097593 review records and the
Beer dataset consists of 528871 rows. For each dataset, we
randomly split them into training, validation, and test sets by
the fraction of 80%, 10%, and 10%. Note, train set is used to

1http://jmcauley.ucsd.edu/data/amazon

train models, validate set aims to find the best model, while
the following experiments are executed on the test set.

Baselines In our experiments, we run our method with
SVD, the most well-known recommender systems, and com-
pare it with nine state-of-the-art recommender systems. To
make a fair comparison, we keep the same negative sample
size as in (Wu et al. 2019).
• SVD(Strang 1993): Singular Value Decomposition, a

popular collaborative filtering methodology learning la-
tent relationship between users and items.

• SVD++(Koren 2008): An extension scenario of SVD
which uses implicit information.

• NEAR(Ouyang and Lawlor 2019): A variant SVD en-
hanced with NEAR. NEAR aims to find the users’ most
critical factor for SVD.

• NCF(He et al. 2017): A novel recommender system based
on deep learning techniques.

• E-NCF(Wu et al. 2019): Explainable NCF, which learns
recommendation and explanation jointly.

• CE-NCF(Wu et al. 2019): An explainable E-NCF varia-
tion applied the critiquing mechanism.

• VNCF(Wu et al. 2019): A variation NCF. state-of-the-art
non-explainable recommendation method.

http://jmcauley.ucsd.edu/data/amazon
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Figure 2: PCA 2D dimension reduction of user latent rep-
resentation on CDs&Vinyl and BeerAdvocate datasets. We
demonstrate the users who like the same item. Blue points
represent the embedding of SVD algorithm. Yellow points
denote the learned embedding of NEAR method. Red points
stand for the rectified embedding of R-NEAR. Notably, R-
NEAR shows the best compactness for the group of users
who have same interests.

• E-VNCF(Wu et al. 2019): Explainable VNCF without cri-
tiquing mechanism.

• CE-VNCF(Wu et al. 2019): The state-of-the-art varia-
tional extension of explainable VNCF boosted by the cri-
tique mechanism.

Evaluation protocols We measure the overall perfor-
mance by Top-K items recommendation ranking. Thus, we
apply a list of ranking evaluation metrics to leverage both
recommendation and interpretation conduct:

• Precision@K Precision@K measures the proportion of
the items that the user prefers have been recommended in
Top-K ranking among K.

Precision@K =
#{(preferred items) ∩ (Top-K)}

K
(8)

• Recall@K Recall reflects the ratio of the items that the
user prefers have been recommended in Top-K ranking
among the whole preferred items.

Recall@K =
#{(preferred items) ∩ (Top-K)}

# preferred items
(9)

• MAP@K Mean Average Precision is designed for con-
sidering measuring the order in predictions, while preci-
sion and recall are incompetent about it. It calculates the
average precision (AP) among all users. For each user,
we compute the AP by the precision and relevant value
in top-N ranks. Here, P and Q represent the number of
users items separately, and relevant is a binary function
that it gives out 1 if the kth recommendation is the item
that the user interests otherwise 0.

Model CDs&Vinyl BeerAdvocate

SVD 1.254 1.114
NEAR 1.182 1.019

R-NEAR 0.849 0.842

Table 3: Root-mean-square standard deviation (RMSSTD)
comparison between R-NEAR and baselines on different do-
main datasets.

AP@K =
1

Q

K∑
k=1

precision(k) · relevant(k)

MAP@K =
1

P

P∑
p=1

AP@N(p)

(10)

• R-Precision R-Precision uses the same relevant func-
tion above, and leverage the percentage of users’ relevant
items.

Precision@N =
1

M

M∑
m=1

relevant(m) (11)

• NDCG@K Normalised Discounted Cumulative Gain is a
famous measurement of ranking quality. DCG measures
the cumulative gain among K ranks, while IDCG lever-
ages the cumulative gain on all relevant items. A greater
NDCG@K value means recommender systems provide
more precise ranks to users.

DCG@K =

K∑
i=1

2relevant(i) − 1

log2(i+ 1)

IDCG@k =

REL∑
i=1

2relevant(i) − 1

log2(i+ 1)

NDCG@k =
DCG@K

IDCG@K

(12)

Recommendation Performance
To leverage the recommendation performance of R-NEAR,
we compare it with nine state-of-the-art recommender sys-
tems. In this experiment, we make recommendations by top-
K item rank, which ranks candidate items by the predicted
ratings and selectsK items. To be fair, we use the same eval-
uation parameters as in (Wu et al. 2019), where we set theK
value to be 5, 10, and 20 forMAP , Precision, andRecall,
and calculate the NDCG by NDCG@10. Table 1 and Ta-
ble 2 demonstrate the Top-k recommendation performance
comparison between our method and assorted baselines on
Amazon CDs&Vinyl and BeerAdovocate dataset separately.
According to these results, we summarise the following key
observations.

Firstly, NEAR, the base method our method variants on,
shows excellent performance and exceed other baselines in
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Figure 3: We demonstrate two group of users who like different items on CDs&Vinyl and BeerAdvocate datasets. Blue points
means the users like item 1, while yellow points reflect the users like item 2. These figures reveal R-NEAR consistently
outperform baselines, since it can clearly separate different groups of users.

majority cases, and demonstrates competitive NDCG per-
formance with CE-VNCF, the state-of-the-art recommenda-
tion algorithm. This result is not surprising because NEAR is
good at filtering unhelpful factors and finding the most sig-
nificant factor. Based on the critical factor, it generates per-
turbed embedding, which helps recommender systems un-
derstand users’ tastes better than other baselines. Although
the computation process of NEAR is complicated and ex-
pensive, these outcomes provide an exciting opportunity to
advance our knowledge of using factor-based explanations
to improve recommendations.

Secondly, our method outperforms NEAR in both two
datasets in terms of all evaluation metrics. We think the rea-
son is that NEAR only manipulates one user factor at a time,
while R-NEAR considers all factors of both users and items.
Additionally, we multiply the factor-based interpretations on
corresponded embeddings, so that we can amplify impor-
tant factors and suppressing unimportant factors. This note-
worthy finding reveals the effectiveness and advance of our
method.

Thirdly, comparing with other deep neural network-based
algorithms, i.e., NCF, E-NCF, and CE-VNCF, our method
consistently shows considerable improvements on all evalu-
ation metrics. The reason we anticipate is that these methods

use neural networks to learn other information, for example,
key-phrase, while our neural network aims to explore more
in-depth knowledge that can explain the attitude of users to
items on factor level. Moreover, R-NEAR reforms recom-
mendation behavior by the factor level explanation, so that
it can attain advanced Top-K item ranking performance.

Latent Representation Analysis
We outlined previously that high-quality latent embedding
is the critical aspect of a good recommendation. Therefore,
we thoroughly appraise the quality of latent embedding in
R-NEAR in this section. Correctly, we qualitatively eval-
uate the user embeddings by visualisation and observation
and quantitatively assess the user latent representations by
statistically evaluation metrics in the unsupervised learning
field.

In this experiment, we visualise users as scatters in clus-
ters. Two main concepts determine the quality of clus-
ters: the compactness and the separation (Hassani and Seidl
2017). The compactness means how close the users who
have the same interests in a cluster, while the separation re-
flects how to differentiate a user cluster are from other clus-
ters. We first evaluate the compactness by the users who like
the same items. Then we measure both coherency and sepa-



Model CH D S DB XB SD

SVD 0.06 0.12 0.32 1.20 23.92 1.36
NEAR 0.07 0.06 0.35 1.12 19.29 1.45

R-NEAR 0.24 0.53 0.56 0.63 14.57 0.81

Table 4: Internal cluster measurements on Amazon
CDs&Vinyl dataset.

Model CH D S DB XB SD

SVD 0.02 0.04 0.18 1.57 45.47 1.61
NEAR 0.05 0.06 0.27 1.15 26.88 1.48

R-NEAR 0.30 0.23 0.63 0.47 8.67 0.82

Table 5: Internal cluster measurements on BeerAdvocate
dataset.

ration by the users who like different items.
As Hassani et al.(Hassani and Seidl 2017) suggests, we

employ the sum of Root-mean-square standard deviation
(RMSSTD) to leverage the compactness in the first task.
Then we report six internal clustering measures in the sec-
ond task, i.e., Calinski Harabasz index (CH), Dunn’s indices
(D), Silhouette index (S), Davies-Bouldin index (DB), Xie-
Beni index (XB) and SD validity index (SD).

Users with same interests In the first experiment, we ran-
domly choose an item from the test set. Then we find out the
users who are interested in this item, which means the users
votes at least 3 ratings for the item. After that, we extract the
latent embeddings of these users and employ PCA (Yu and
Liu 2003) to reduce the dimensions.

We qualitatively analyse the embedding quality by ob-
serving the dimensionally-reduced embedding visualisation,
where the area of regions in the outcome denotes the level
of density. We compare our method with SVD and NEAR
on both Amazon CDs&Vinyl and BeerAdvocate datasets, as
shown in Figure 2. There are several important observations
in this result. First, the SVD shows the most sparse cluster,
while NEAR improves a little over SVD. As we explained
before, it is because NEAR ameliorates one latent factor at
each training time, leading a small development on the rep-
resentation quality. In contrast, R-NEAR shows the densest
cluster by intuitive observation, which reveals our method
can learn users’ preferences better than baselines.

We then quantitatively calibrate the compactness by
the Root-mean-square standard deviation (RMSSTD).
RMSSTD calculates the square root variance of attributes
in each cluster, which are commonly employed to measure
only the density of clusters (Hassani and Seidl 2017). The
smaller value of RMSSTD, the better quality of latent em-
beddings. Table 3 demonstrates the evaluation results, which
significantly reveal R-NEAR surpass baselines on both two
datasets. In terms of compactness, this result provides strong
statistical evidence to demonstrate that our method can learn
personal embeddings with good quality.

Users with different interests In this section, we run the
experiment of users who have different interests to evaluate
both coherency and separation. Similar to the prior experi-
ment, we first randomly choose two items from the test set.
Then we extract the users who like the two items respec-
tively. We also compare our method with SVD and NEAR
in this experiment on the two datasets.

We demonstrate the qualitative analysing results in Fig-
ure 3. SVD shows the worst because users with different
interests are not wholly separated, and users with the same
interests are not aggregated. NEAR revise several outliers
and performs slightly better than SVD. R-NEAR continu-
ously outperforms baselines since it can isolate the users
with distinct interests and group the users who are interests
in the same item. This instinctive observation reveals that R-
NERA can achieve both good compactness and separation
for user clusters.

We then apply six clustering measurements to quantita-
tively appraise both compactness and separation on latent
embeddings, as shown in Table 4 and Table 5. All these six
evaluation methods consider how much the cluster centers
are expanded and how close the scatters around their center
simultaneously. Here, the larger value of CH, D, and S, the
better quality of learned embeddings. In contrast, the smaller
value of DB, XB, and SD, the more optimal performance.
In these results, we can observe that R-NEAR persistently
exceed other recommender systems, which substantiates the
ability of our method to learn high-quality embedding and
to achieve state-of-the-art recommendation performance.

Conclusion

In this paper, we proposed R-NEAR, a universal explana-
tion method for any latent factorised based recommender
systems and addressed both recommendation and interpre-
tation problems. Besides, we introduce a new training fash-
ion that applying explanation to reform recommendation
quality. We compared our method with nine state-of-the-
art recommendation methods on two real-world datasets
from distinct domains. Experimental results revealed that R-
NEAR continuously beat baselines and achieve state-of-the-
art performance in the Top-K item ranking task. We thor-
oughly evaluated the embedding quality through both qual-
itative and quantitative analysis. The qualitative assessment
demonstrated that our method attains good compactness and
excellent separations for user clusters. The quantitative eval-
uation used six internal clustering measurements and proved
that our method had learned personal embeddings with ex-
ceptional quality. These outcomes as a whole are convincing
arguments for the extensive use of latent factorised explana-
tion to improve recommendations. Overall, explaining is not
enough, while joining explanations into recommender sys-
tems to reform recommendation performance is the matter.
We hope this work provides a rich foundation for the exten-
sions of using general explanation improving recommender
systems, for example, natural language interpretation.
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