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ABSTRACT 

Weather data collected from automated weather stations have 

become a crucial component for making decisions in agriculture 

and in forestry. Over time, weather stations may become out-of-

order or stopped for maintenance, and therefore, during those 

periods, the data values will be missing. Unfortunately, this will 

cause huge problems when analysing the data. The main aim of 

this study is to create high-quality historical weather datasets by 

dealing efficiently with missing values. In this paper, we present 

a set of missing data imputation methods and study their 

effectiveness. These methods were used based on different types 

of missing values. The experimental results show that two the 

proposed methods are very promising and can be used at larger 

scale.  
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1. INTRODUCTION 
Weather data is gaining popularity within precision agriculture 

community, however, its collection, storage, and analysis present 

huge concerns in relation to its quality and usage [1]. Weather is 

one of the key sources that affects directly crop yield, particularly 

in the context of climate change [2] [3] [4]. The accurate 

modelling and the use of modern data analytics approaches will 

help the farmers to make efficient decisions about what and when 

they farm, how to manage the fields, and when to drill and harvest 

[5]. One of the challenges of historical weather data collected 

over a long period of time is the missing data values. In a time 

series environment, handling missing data represents a serious 

issue in forecasting [6]. Missing data are not only causing 

difficulties in estimating parameters and identifying processes but 

can be the cause of misinterpretations regarding the temporal and 

the spatial variations of environmental indicators [7]. Incomplete 

data in a historical dataset is considered as an unavoidable 

problem when dealing with the real-world data sources [8]. This 

issue has been analysed and discussed thoroughly in the literature 

[9]. Among the relevant weather variables, temperature and 

rainfall are the key factors in the crop yield analysis [10] [11]. 

Temperature influences length of growing season and rainfall 

affects the production of plant [12] [13]. These two weather 

variables must be included in any agricultural production 

prediction model.  

Rainfall analysis plays an important and significant role in the 

field of agriculture and ecological studies [14] [15] [16] [17]. The 

presence of missing values in rainfall data is a common problem 

in the process of data analysis [18]. In the literature, many authors 

suggested various imputation methods for estimating rainfall 

missing values. Little and Rubin [19] concluded that the 

performance of any imputation method depends on several 

weather factors: 

• Nature of occurrences  

• Neighbouring stations  

• Intrinsic characteristics  

For estimating missing rainfall values, Suhalia et al. [20] and 

Silva et al. [21]  tested multiple methods such as normal ratio, 

arithmetic mean, inverse distance, aerial precipitation ratio, 

correlation ratio method, inverse weighting distance and 

correlation coefficient methods. To compare these methods, they 

used techniques such as Mean Absolute Error (MAE), correlation 

coefficient (R) and Similarity index (S index). The Normal Ratio 

method (NR) is the most common method used for estimating 

missing rainfall data [22].  

Temperature could be used for controlling many physical and 

biological processes between atmosphere and Earth surface, 

including transpiration, respiration, and photosynthesis [23]. For 

imputing temperature missing values, the most accurate method 

depends on data interpolation schemes [24] [25]. R. P. De Silva 

et al. [26] compared the Normal Ratio method to Arithmetic 

Mean, Aerial Precipitation Ratio (APR), and Inverse Distance 

methods. They concluded that the normal ratio method is the most 

suitable method compared to the three others.  

Yozgatligil et al. [27] compared several imputation methods for 

completing the missing values in spatiotemporal meteorological 

time series. They artificially created missing data in monthly 

mean temperature and total precipitation obtained from the 

Turkish State Meteorological Service. One of the techniques used 

is the normal ratio which produced more robust and better results 

than simple arithmetic average and normal ratio weighted with 

correlations.  

2. METHODLOGY 

2.1 Dataset  
The data is collected from twelve temperature and rainfall 

measuring stations that were selected based on the coverage areas. 

These areas are located in the UK. The weather data was recorded 

over a 5-year period (2014 to 2018). The data values were 

recorded every fifteen minutes. 

Table 1. Records number for each year 

Year 
Days 

number 

Records 

number 

2014 365 35040 

2015 365 35040 



2016 366 35136 

2017 365 35040 

2018 295 28320 

 

Table 1 lists the records number that we should have for each 

year. As we started analysing the data by the fourth quarter of 

2018, we have 295 days of the same year. Table 2 contains 

geographical coordinates of the nearest weather stations of each 

weather station. Table 3 presents the maximum and minimum 

temperatures for the four weather stations. 

 

Table 2. Geographical coordinates of nearest weather 

stations 

Target 

station 
Nearest station Longitude Latitude 

Station 1, 

Wales 

1st nearest station -3.315 51.128 

2nd nearest station -2.924 51.308 

Station 2, 

Central 

1st nearest station -1.524 52.057 

2nd nearest station -1.089 51.715 

Station 3, 

South-

West 

1st nearest station -2.882 50.934 

2nd nearest station -2.924 51.308 

Station 4, 

West-

Midlands 

1st nearest station -1.524 52.057 

2nd nearest station  -2.003 51.703 

 
Table 3. Maximum and minimum temperatures for                 

the target weather stations  

Target 

station 

Temperature 

maximum 

Temperature 

minimum 

Station 1, 

Wales 
59.1 -6.0 

Station 2, 

Central 
55.7 -29.9 

Station 3, 

South-West 
60.0 -35.2 

Station 4, 

West-

Midlands 

31.4 -32.8 

 

2.2 Analysis Techniques 

The purpose of this study is to select an appropriate technique for 

estimating missing values for the variables; temperature and 

rainfall. We chose a technique based on revised normal ratio 

methods [28] and showed a good performance improvement 

compared to normal ration methods.  This approach has been used 

for the temperature and extended to rainfall. For the evaluation 

purposes, we implement various approaches with the view to 

compare to our results.  

2.2.1 Normal Ratio Method  
The normal ratio (NR) method was firstly suggested by Paulhus 

and Kohler in 1952 [29] and then it was updated by Young in 

1992 [22]. It is based on mean ratio of data between a target 

station and neighbouring stations [28]. There is another version 

of normal ratio method that is called old normal ratio (ONR). It 

was used for estimating missing rainfall records [30]. The 

weighting factor for ONR is arithmetic mean. The main equation 

of this method is as follows: 

�� = �� ∑ ����	
�	�� �	  (1) 

where �� is the missing value of temperature or rainfall at a target 

station; � is the number of nearest (neighbouring) stations; �� is 

the sample mean of available data at a target station; �	 is the 

sample mean of available data at the ith neighbouring station and �	 is the observed value of temperature or rainfall at the ith 

neighbouring station. 

2.2.2 Geographical Coordinates Method 
Geographical coordinate (GC) method is a weighting method 

which is used for imputing missing rainfall values [28]. It uses the 

inverse of geographical coordinates (latitude and longitude) to 

calculate weight coefficient. In GC method, the centre point 

represents a target station. The distance from a centre point to 

surrounding stations is computed in order to determine the nearest 

stations.  

�� = ∑  ��	���	�∑ � ��	���	���	�� ��	�� �	 (2) 

where �� is the missing value of temperature or rainfall at a target 

station; �	 is longitude of the ith neighbouring station; �	 is 

latitude of the ith neighbouring station and �	 is the observed value 

of temperature or rainfall at the ith neighbouring station. 

2.2.3 Normal ratio with geographical coordinates 

method  
This method (NRGC) consists on combining both methods NR 

and GC mentioned in this study. Since NR is often found as a best 

estimation method, it adapts the location element in order to 

upgrade performance. The equation is expressed as follows:  

�� = ∑  � ��	���	������	�
∑ � ��	���	������	 ��	�� ��	�� �	 (3) 

2.2.4 Nearest Neighbour Method 
One of the simple methods for filling missing values is nearest 

neighbour (NN). It consists on taking a nearest neighbouring 

station and using its observation to fill in some missing values in 

the local station [31]. The selection of a nearest neighbour can be 

done geometrically or by taking the station that has highest 

correlation with the target location. The value of a nearest 

neighbouring station can be transferred directly without making 

any change [32]. In the literature, we found other methods based 

on similar concept such as Hot deck imputation which consists on 

identifying the most similar case to the case that has a missing 

value and substituting the most similar case’s X value for the 

missing case’s X value [8]. There is also Closest station method 

that Wallis et al. [32] used, where they combined a variant of the 

hot-deck infilling method with the mean value infilling method. 

In this study, they identified the closest three stations, and the 

missing days were estimated from closest station with data. If a 

closest neighbouring station does not have data, then data are 

token from a next nearest neighbouring station. If none of the 

three closest stations have data, then the infilling value is a long-

term mean for an appropriate base station and month. In addition, 



there is Single best estimator (SBE) method which is an 

analogous method to the fact of using closest neighbouring station 

to fill gaps for a target station [33].  

3. EXPERIMENTAL RESULTS 

3.1 System Settings  

The process for analysing weather data is shown in Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The first step consists on exploring and focusing on rainfall and 

temperature data. In the second step, we developed an algorithm 

to validate the number of days, number of records, null and 

missing values for each specific year and for each weather station. 

The third step looks for the number of gaps (interval) of missing 

values or null values that are less than one hour. In this case, we 

use a simple interpolation by taking into consideration previous 

and next values. In the case where the gaps are bigger than one 

hour, we use an interpolation technique that takes into account the 

neighbouring stations. In the fifth step, based on different results 

generated by interpolation techniques and depending on RMSE, 

a decision is made for others weather stations. The final step is to 

fill gaps and process null values automatically with estimated 

rainfall and temperature values. 

4. RESULTS 
For comparing the four implemented techniques, deviation or 

error between an actual and an estimated value should be 

calculated. The Root Mean Square Error is considered a 

representative value for measuring errors. The four imputation 

methods were compared to each other’s.  

Concerning rainfall data, Figure 2 shows the results obtained by 

implementing the techniques on four weather stations. It depicts 

clearly the efficiency of methods based on geographical 

coordinates. On the other hand, on Figure 3 both methods NRGC 

and GC produced small RMSE error. Besides, NN method 

produced good accuracy for the four stations. 
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Figure 1. Workflow for analyzing weather stations data. 
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5. CONCLUSION 
Good quality temperature and rainfall data are necessary for 

agricultural decision support. In this study, we aimed to explore 

the estimation methods in order to choose the most accurate one 

for both temperature and rainfall missing values. The 
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Figure 2. Performances of imputation methods at 

different missingness levels of rainfall data based on 

RMSE for Station 1 Wales (a), Station 2 Central (b), 

Station 3 South-West (c) and Station 4                                      

West-Midlands (d) 

(e) 

(g) 

Figure 3. Performances of imputation methods at 

different missingness levels of temperature data based 

on RMSE for Station 1 Wales (e), Station 2 Central (f), 

Station 3 South-West (g) and Station 4 West-Midlands 

(h) 

(h) 



 

performance of the four methods are tested and evaluated using 

state of the art measures. Based on these measures, we have 

shown that NRGC and GC methods are the most accurate and 

appropriate for estimating the temperature and rainfall missing 

values. Due to the unavailability of data (privacy issues), we were 

concentrated on UK. We will generalize the results by 

implementing the same techniques on other real data from 

different countries.  
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