ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/332630595

CascadeML: An Automatic Neural Network Architecture Evolution and Training
Algorithm for Multi-label Classification

Preprint - April 2019

CITATIONS READS
0 34
2 authors:
Arjun Pakrashi Brian Mac Namee
University College Dublin 7 University College Dublin
10 PUBLICATIONS 19 CITATIONS 103 PUBLICATIONS 617 CITATIONS
SEE PROFILE SEE PROFILE

Some of the authors of this publication are also working on these related projects:

ot Active Learning for Regression View project

All content following this page was uploaded by Arjun Pakrashi on 13 December 2019,

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/332630595_CascadeML_An_Automatic_Neural_Network_Architecture_Evolution_and_Training_Algorithm_for_Multi-label_Classification?enrichId=rgreq-d734b2ae4d05f9da15d2d06bc60261ca-XXX&enrichSource=Y292ZXJQYWdlOzMzMjYzMDU5NTtBUzo4MzU0NTI0OTE3OTY0ODJAMTU3NjE5ODgwNDA3Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/332630595_CascadeML_An_Automatic_Neural_Network_Architecture_Evolution_and_Training_Algorithm_for_Multi-label_Classification?enrichId=rgreq-d734b2ae4d05f9da15d2d06bc60261ca-XXX&enrichSource=Y292ZXJQYWdlOzMzMjYzMDU5NTtBUzo4MzU0NTI0OTE3OTY0ODJAMTU3NjE5ODgwNDA3Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Active-Learning-for-Regression?enrichId=rgreq-d734b2ae4d05f9da15d2d06bc60261ca-XXX&enrichSource=Y292ZXJQYWdlOzMzMjYzMDU5NTtBUzo4MzU0NTI0OTE3OTY0ODJAMTU3NjE5ODgwNDA3Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-d734b2ae4d05f9da15d2d06bc60261ca-XXX&enrichSource=Y292ZXJQYWdlOzMzMjYzMDU5NTtBUzo4MzU0NTI0OTE3OTY0ODJAMTU3NjE5ODgwNDA3Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Arjun_Pakrashi?enrichId=rgreq-d734b2ae4d05f9da15d2d06bc60261ca-XXX&enrichSource=Y292ZXJQYWdlOzMzMjYzMDU5NTtBUzo4MzU0NTI0OTE3OTY0ODJAMTU3NjE5ODgwNDA3Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Arjun_Pakrashi?enrichId=rgreq-d734b2ae4d05f9da15d2d06bc60261ca-XXX&enrichSource=Y292ZXJQYWdlOzMzMjYzMDU5NTtBUzo4MzU0NTI0OTE3OTY0ODJAMTU3NjE5ODgwNDA3Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_College_Dublin?enrichId=rgreq-d734b2ae4d05f9da15d2d06bc60261ca-XXX&enrichSource=Y292ZXJQYWdlOzMzMjYzMDU5NTtBUzo4MzU0NTI0OTE3OTY0ODJAMTU3NjE5ODgwNDA3Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Arjun_Pakrashi?enrichId=rgreq-d734b2ae4d05f9da15d2d06bc60261ca-XXX&enrichSource=Y292ZXJQYWdlOzMzMjYzMDU5NTtBUzo4MzU0NTI0OTE3OTY0ODJAMTU3NjE5ODgwNDA3Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Brian_Mac_Namee?enrichId=rgreq-d734b2ae4d05f9da15d2d06bc60261ca-XXX&enrichSource=Y292ZXJQYWdlOzMzMjYzMDU5NTtBUzo4MzU0NTI0OTE3OTY0ODJAMTU3NjE5ODgwNDA3Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Brian_Mac_Namee?enrichId=rgreq-d734b2ae4d05f9da15d2d06bc60261ca-XXX&enrichSource=Y292ZXJQYWdlOzMzMjYzMDU5NTtBUzo4MzU0NTI0OTE3OTY0ODJAMTU3NjE5ODgwNDA3Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_College_Dublin?enrichId=rgreq-d734b2ae4d05f9da15d2d06bc60261ca-XXX&enrichSource=Y292ZXJQYWdlOzMzMjYzMDU5NTtBUzo4MzU0NTI0OTE3OTY0ODJAMTU3NjE5ODgwNDA3Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Brian_Mac_Namee?enrichId=rgreq-d734b2ae4d05f9da15d2d06bc60261ca-XXX&enrichSource=Y292ZXJQYWdlOzMzMjYzMDU5NTtBUzo4MzU0NTI0OTE3OTY0ODJAMTU3NjE5ODgwNDA3Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Arjun_Pakrashi?enrichId=rgreq-d734b2ae4d05f9da15d2d06bc60261ca-XXX&enrichSource=Y292ZXJQYWdlOzMzMjYzMDU5NTtBUzo4MzU0NTI0OTE3OTY0ODJAMTU3NjE5ODgwNDA3Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf

1904.10551v1 [cs.LG] 23 Apr 2019

arxXiv

CascadeML: An Automatic Neural Network
Architecture Evolution and Training Algorithm
for Multi-label Classification*

Arjun Pakrashi and Brian Mac Namee

Insight Centre for Data Analytics
University College Dublin
Dublin, Ireland
arjun.pakrashi@ucdconnect.ie,arjun.pakrashi@insight-centre.org
brian.macnamee@Qucd.ie

Abstract. Multi-label classification is an approach which allows a dat-
apoint to be labelled with more than one class at the same time. A
common but trivial approach is to train individual binary classifiers per
label, but the performance can be improved by considering associations
within the labels. Like with any machine learning algorithm, hyperpa-
rameter tuning is important to train a good multi-label classifier model.
The task of selecting the best hyperparameter settings for an algorithm
is an optimisation problem. Very limited work has been done on auto-
matic hyperparameter tuning and AutoML in the multi-label domain.
This paper attempts to fill this gap by proposing a neural network algo-
rithm, CascadeML, to train multi-label neural network based on cascade
neural networks. This method requires minimal or no hyperparameter
tuning and also considers pairwise label associations. The cascade al-
gorithm grows the network architecture incrementally in a two phase
process as it learns the weights using adaptive first order gradient algo-
rithm, therefore omitting the requirement of preselecting the number of
hidden layers, nodes and the learning rate. The method was tested on 10
multi-label datasets and compared with other multi-label classification
algorithms. Results show that CascadeML performs very well without
hyperparameter tuning.

1 Introduction

In multi-label classification problems a datapoint can be assigned to more than
one class, or label, simultaneously [12|. For example, an image can be clas-
sified as containing multiple different objects, or music can be labelled with
more than one genre. This contrasts with multi-class classification problems in
which objects can only belong to a single class. Multi-label classification algo-
rithms either break the multi-label problem down into smaller multi-class clas-
sification problems—for example classifier chains |23]—and are known as prob-
lem transformation methods—or modify multi-class algorithms to directly train

* This research was supported by Science Foundation Ireland (SFI) under Grant Num-
ber SF1/12/RC/2289.

2 Pakrashi and Mac Namee

on multi-label datasets—for example BackPropagation in Multi-Label Learning
(BPMLL) [37]—and are known as algorithm adaptation methods.

Automatic machine learning [8], or AutoML, approaches have seen a recent
resurgence of interest as researchers look for ways to automatically select opti-
mal algorithms, features, model architectures, and hyperparameters for machine
learning tasks. The AutoML research community has, however, paid very little
attention to multi-label classification problems, although there have been some
recent efforts [251[26}33].

The Cascade?2 algorithm [21] is an interesting neural network approach that
learns model parameters and model architecture at the same time. In Cascade?2,
which is based on the cascade correlation neural network approach [7], train-
ing starts with a simple perceptron network, which is grown incrementally by
adding new cascaded layers with skip-level connections as long as performance
on a validation dataset improves. Weights in each new layer are trained inde-
pendently of the overall network which greatly reduces the processing burden of
this approach.

This paper proposes CascadeML, a new AutoML solution for multi-label
classification problems, that is inspired by the Cascade2 algorithm and BPMLL.
Improvements are made to both components leading to an implementation that
requires minimal hyperparameter or network architecture tuning. In a series
of evaluation experiments this approach has been shown to perform very well
without the extensive hyperparameter tuning required by state-of-the-art multi-
label classification methods. To the best of authors’ knowledge this is the first
automatic neural network architecture selection and training approach for multi-
label classification methods.

The remainder of the paper is structured as follows. Section[2]discusses the ex-
isting literature including a formal definition of multi-label classification and the
BPMLL algorithm. Section [2.3] describes the cascade neural network approach
and, specifically, the Cascade2 algorithm. The proposed CascadeML method is
then presented in Section [3] The design of an experiment to evaluate the perfor-
mance of the CascadeML algorithm, and benchmarking its performance against
state-of-the-art multi-label classification approaches is described in Section [4]
Section [5] presents and discusses the results of this experiment. Finally, Section
[6] discusses future research directions and concludes the paper.

2 Related Work

In this section first the cost function of BPMLL will be mentioned followed by a
brief review of AutoML in multi-label literature. Then the Cascade2 algorithm
will be explained.

2.1 BPMLL

The first neural-network based multi-label algorithm, BackPropagation in Multi-
Label Learning (BPMLL), was proposed by Zhang et al. in 2006 [37]. It is a single

CascadeML 3

hidden layer, fully connected feed-forward architecture, which uses the back-
propagation of error algorithm to optimise a variation of the ranking loss function
[38] that takes pairwise label associations into account. This loss function can
be defined as follows:

E= oo 3 (e =) 1)

1
yilly.l (k1)€Y x9;)

Here y, indicates the set of labels assigned to «; and ¥y, indicates the set of labels
which are not assigned to x;. The network uses the tanh activation function,
therefore this algorithm uses a bipolar encoding of the target variables: yZ@ =41
if the label [is relevant to x;, and —1 if irrelevant. Here cl(.k) and cl(.l) are the
outputs of the k** and the I** output units representing the corresponding label
predictions for the datapoint x;.

The intuition behind this loss function is that for a pair of labels (k,1),

where k is relevant to the datapoint x; and [is not, if the prediction score for
(k) _

k is positive whereas the prediction score for [is negative, then exp(—(c;
cgl))) has the minimum penalty. An incorrect prediction score order results in
higher penalty. Therefore, minimising Eq. would result in pairs of labels being
predicted correctly.

For BPMLL, like any neural network algorithm, the number of hidden units
has to be determined, which is a hyperparameter to be tuned. In [10] modifica-
tions to the BPMLL loss function were proposed. This modified version learns
the network as in BPMLL, and also learns the values using which the predicted
scores are thresholded to get label assignments.

There have been a small number of other neural network approaches specif-
ically designed for multi-label classification scenarios. In 2009, Zhang et al. pro-
posed a multi-label-based radial basis function network, ML-RBF [36]. This is an
extension of the RBF network, optimising the sum-of-squares function. Multi-
class multi-label perceptron(MMP) |5] trains perceptrons for each label but in a
way such that the applicable labels are ranked higher than the incorrect labels,
thus considering associations between labels. An improvement of MMP, multi-
label pairwise perceptron (MLPP), was proposed in [16]. This approach trains
the perceptrons for each pair of classes. Nam, et al. |17] demonstrate the effi-
ciency and effectiveness of cross-entropy for multi-label classification, improving
the work of BPMLL by using several recent developments such as ReLU acti-
vation units, dropout and the use of the adaptive gradient descent algorithm
AdaGrad [9].

Some work involving deep neural networks on computer vision and image
recognition were done in [3}34L39,/40], which uses multi-label datasets as a part
of the training pipeline. Similarly, convolutional neural networks was extended
to predict multi-label images in [32]. In 22| the feature space of multi-label
classification was modified using deep belief networks such that the labels become
less dependent, after which well-known multi-label algorithms are applied in the
modified space.

4 Pakrashi and Mac Namee

2.2 AutoML

AutoML algorithms focusing on multi-label specific problems are approached
in [251/26], using genetic algorithms to train and select multi-label models. Wever
et al. [33] propose an extension of an existing multi-class AutoML tool for multi-
label. Except these works, no other AutoML based or automatic hyperparameter
tuning based work on the multi-label domain was found.

The cascade correlation neural network approach [7] was an early AutoML
method. In cascade correlation neural networks training starts with a simple
perceptron network, which is grown incrementally by adding new cascaded lay-
ers with skip-level connections as long as performance on a validation dataset
improves. Since the proposal of the original cascade correlation algorithm in |7],
various improvements that follow a similar overall process to the original method
have been proposed, for example in [1,[11}20,31|, as well as Cascade2 [21]. Active
research in this field, however, is fairly limited. As it is the basis for CascadeML,
the Cascade2 algorithm is described in detail in the next section.

2.3 The Cascade2 Algorithm

This section describes the Casecade2 algorithm upon which CascadeML is based.
The generic architecture of a cascade neural network is first described, before
the specific Casecade2 training algorithm is presented.

Architecture The cascade correlation neural network, first proposed by Fahlman
& Lebiere [7], is an incremental greedy multi-class neural network learning al-
gorithm which grows the network architecture at the same time as it trains the
network weights. For a multi-class classification problem with d inputs and ¢
classes, the architecture of a network trained using CascadeML will have d + 1
inputs (including a bias term) and ¢ outputs (one for each class). Each of the
network’s L hidden layers, [;, will have only one unit, which receives incoming
weights from all the d + 1 inputs as well as from all the hidden units in the
previous layers. The output of each hidden layer I; is connected to the ¢ outputs
of the network. A layer with such a connection scheme is called a cascade layer.
We can categorise the weights in a cascade network into four types:

1. Input to output layer weights connecting the d 4+ 1 inputs to the ¢
outputs, forming a perceptron network.

2. Input to hidden layer weights connecting the d+1 inputs to the L hidden
cascade layers.

3. Hidden to hidden layer weights connecting the output of all the previous
hidden cascade layers l1,ls,...,l;_1, to the hidden cascade layer ;.

4. Hidden to output layer weights connecting the outputs of the cascade
layers I1,1s,...,l to the ¢ output units.

Figure [Lh| shows an example of a simple cascade neural network with three
inputs, two output classes, and three hidden cascade layers (l1, l2, and I3). All

CascadeML 5

Outputs Outputs Outputs Outputs
D (G D G D (@ ©® ©®
O
© O O 1
20 Ne; 7 2 O—H e,
30 He, 0 gO—= e,
O O n e “O
(a) Phase I, ini- (b) Phase II, train (c) PhaseI, cascade (d) Phase II, train
tial perceptron net- cascade layer 1 layer 1 added, cascade layer 2
work. connections. Out- training output connections. Previ-
put layer weights weights, input to ous cascade layer
frozen. hidden weights weights and out-
frozen. put layer weights
frozen.

Outputs Outputs Outputs

oo oNo! o¥o!
o o
0! 0! b o4
o o b o
ﬂo d ﬂo d h ﬂo d
0 0 I o
£5 £5 e

(e) Phase I, cascade (f) Phase II, train (g) Phasel, cascade (h) Final trained
layer 2 added, train- cascade layer 3 layer 3 added, train- architecture, equiv-
ing output weights, connections. Previ- ing output weights, alent to Fig.
input to hidden and ous cascade layer input to hidden and
hidden to hidden weights and out- hidden to hidden
weights frozen. put layer weights weights frozen.

frozen.

~

Fig. 1: The steps in the Cascade 2 network training algorithm. In each diagram
the circles labelled Inputs correspond to the input layer and the circles labelled
Outputs correspond to the output layer of the network. Hidden cascade units
are represented by the circles labelled [;. A weight between nodes in two layers
exists, where horizontal and vertical lines intersect. Crosses indicate a weight
that is trainable at a specific step in the training process, while squares indicate
a weight that is frozen at a specific step. ¢ is the activation function used at
the output layer. (h) shows a more typical network diagram of the final network
trained.

connections flow from left to right. The cascade network is grown dynamically,
one layer at a time, and the four different types of weights are each trained in
slightly different ways (explained in detail below). Once training is complete,
prediction uses a straight-forward feedforward algorithm that propagates values
through the cascade layers.

Training Model training in the Cascade2 algorithm starts with a simple per-
ceptron network (Figure with d + 1 inputs and ¢ outputs. This network is

6 Pakrashi and Mac Namee

referred to as the main network. The main network is grown as training proceeds
by iteratively adding hidden cascade layers to it. This is achieved by iteratively
repeating two phases, Phase I and Phase II, each of which trains different parts
of the cascade network.

In Phase I, the input to output layer weights (type 1 in the list above) and
hidden to output layer weights (type 4) of the main network are trained, while
all other weights (input to hidden layer and hidden to hidden layer) are frozen.
The target values used in this phase to calculate the loss of the network are the
target classes from the original dataset. The mean squared error (MSE) between
the output of the main network and the ground truth is minimised using gradient
descent.

Phase II trains and adds a new cascade layer [; at the i*" iteration of training.
The inputs to the newly added layer /; are the d + 1 input dimensions, and the
outputs from the previous hidden layers Iy, ...,l;_1, in the main network. At this
phase only the weights involving the new hidden layer, [;, are trained. These are
the input to hidden layer weights (type 2) for I;; hidden to hidden layer weights
on connections of the output of previous hidden cascade layers, l1,...,l;_1, to
the current hidden layer, I; (type 3); and the weights connecting the new hidden
layer, [;, to the output layer (type 4). All other weights in the main network are
frozen. In this phase the target values used in training are not the original target
values, but rather the error between the MSE of the main network constructed
up to the previous iteration 7 — 1, and the output of the new layer ;.

Once the weights associated with the new hidden layer have been trained the
layer and these weights are added to the main network. The weights connecting
the new hidden layer, [;, to the output layer are negated when these are added
to the main network. This is so that the contribution of the output of the newly
added layer will minimise the error of the main network [18]—recall that the
newly added layer was trained to predict the main network error.

When Phase II is complete, the algorithm proceeds again to Phase I and
continues iterating between Phase I and Phase II until a maximum depth is
reached or a learning error threshold is not exceeded. Training always ends with
Phase I.

Example Figure [1| shows an example of the growth of a cascade network (the
neural network diagram scheme used by Fahlman & Lebiere [7] is used). Figure
[[a] shows the initial network with 3 inputs and 2 outputs. In this schematic the
intersections of the straight lines indicate the weights. A cross at an intersection
indicates that a weight is trainable at the current phase, while a square indicates
that a weight is frozen. The algorithm starts in Phase I and the network in Figure
is trained. All input to output layer weights (type 1), are trained (no hidden
to output layer weights (type 4) exist yet). Next, in Phase II, a new cascade
layer, I, is added as shown in Figure and only the input to hidden layer
(type 2) and hidden to hidden layer (type 3) weights related to the newly added
layer, [;, are trained. Next, the process goes back to Phase I and trains input to
output layer (type 1) and hidden to output layer (type 4) weights in the main

CascadeML 7

network as shown in Figure [Ic This process iterates two more times through
Phase I and II in Figures [Id} [I¢ and [Tf] until the final network in Figure [Tg] is
produced. Figure [Th] shows this same final network using a more typical network
diagram.

3 The CascadeML Algorithm

CascadeML is a cascaded neural network approach to multi-label classification
based on Cascade2 |21]. The main objective of this method is to find good multi-
label classifier models that take advantage of label associations, while minimising
the model selection and training time by omitting hyperparameter tuning and
architecture tuning.

CascadeML uses a similar training process to that described in Section [2.3
CascadeML starts with a perception network with d + 1 inputs (including the
bias unit) and ¢ output units, one for each label. In Phase I, only the hidden to
output layer and input to output layer weights are trained, as in Cascade2. The
loss function used in this phase is the BPMLL loss function shown in Eq. ,
which allows CascadeML to consider pairwise label associations.

In Phase IT CascadeML differs from Cascade2 in the following way. First, in-
stead of adding hidden cascade layers with a single unit at each iteration, hidden
cascade layers with multiple units are added. This gives rise to a hyperparam-
eter selection problem as the number of units in each hidden layer needs to be
determined. To overcome this, at each iteration of CascadeML, a candidate pool
of many candidate hidden cascade layers is trained, that could be added to the
main network. Each of the candidate hidden cascade layers is initialised with
randomly selected initial weight values, a randomly selected activation function,
and a randomly selected number of units. Each of the candidate hidden cascade
layers is trained independently in parallel, to minimise MSE as explained in the
Cascade? algorithm. Once they have all been trained the best candidate hidden
cascade layer from the candidate pool is selected (based on calculated loss on a
validation dataset) and added to the main network.

To add flexibility to the network architectures explored by Cascade-ML, the
algorithm can include candidate hidden cascade layers that are sibling layers
to the deepest hidden cascade layer already in the main network [1], as well as
successor cascade layers. This allows wide architectures as well as deep architrec-
tures to be explored. This is done by training candidate cascade networks in the
candidate pool as successors and siblings and then selecting the best of the two
types of candidate network.

The candidate hidden cascade layers in the candidate pool can each be trained
independently in isolation from the main network, because when training the
candidate hidden cascade layer, [;, the inputs to the layer, the targets and the
weights of the main network are all fixed. Therefore, the hidden cascade layer,
l;, can be considered a subnetwork, trained in isolation and then added to the
main network.

8 Pakrashi and Mac Namee

Table 1: Multi-label datasets
Dataset Instances Inputs Labels Labelsets Cardinality MeanIR

flags 194 26 7 24 3.392 2.255
yeast 2417 103 14 77 4.237 7.197
scene 2407 294 6 3 1.074 1.254
emotions 593 72 6 4 1.869 1.478
medical 978 1449 45 33 1.245 89.501
enron 1702 1001 53 573 3.378 73.953
birds 322 260 20 55 1.503 13.004
genbase 662 1186 27 10 1.252 37.315
cal500 502 68 174 502 26.044 20.578
llog 1460 1004 75 189 1.180 39.267

When the best candidate hidden cascade layer is selected from the candidate
pool, it is added to the main network by copying the input to hidden layer,
weights to the main network, negating the hidden to output layer weights and
connecting them to the main network as in Cascade2. The main network in-
creases in depth or the deepest layer grows in breadth depending on whether a
successor or a sibling candidate layer was selected.

For both Phase I and Phase II, an adaptive first order gradient descent al-
gorithm iRProp- [13], a variant of RProp [13}124], is used. iRProp- was found
to be more stable than the originally used Quickprop [6]. iRProp- is an adap-
tive algorithm which uses an adaptive learning rate and the sign of the partial
derivative of the error function for each weight adjustment. This method mainly
helps learn very fast in the flat regions of the error space and near local minima,
as it uses only the sign of the partial derivative (ignoring its magnitude) and
uses an adaptive learning rate. L2 regularisation [9] was used in both phases of
CascadeML.

4 Experiment Design

To evaluate the effectiveness of CascadeML, an experiment was performed on
ten well-known multi-label benchmark datasets listed in Table [l In Table [l
Instances, Inputs and Labels are the number of datapoints, the dimension of the
datapoint and the number of labels respectively. Labelsets indicates the number
of unique combinations of labels present in a dataset. Cardinality measures the
average number of labels assigned to each datapoint, and MeanIR [2| indicates
the imbalance ratio of the labels.

The performance of models trained using CascadeML was compared with
the multi-label neural network algorithm BPMLL, and four other state-of-the-
art multi-label classification algorithms: classifier chains [23] (CC), RAKEL |30],
HOMER |[2§|, and MLkNN |[35]. These algorithms were selected to cover differ-
ent types of multi-lable classification techniques. Classifier chains, RAKEL and
HOMER, when used with SVMs, are ensemble methods that have been previ-
ously shown to be the best performing the multi-label classifiers [15,{19]; BPMLL

CascadeML 9

is a well-known multi-label specific neural network algorithm; and MLKNN is a
nearest-neighbour based algorithm adaptation method. The implementations of
classifier chains, RAKEL, HOMER, MLKNN and BPMLL are from the MULAN
library [29] and implemented in Java. CascadeML was implemented in Pythorﬂ

To compare the performances of the methods, label-based macro-averaged
F-Score [38] was used. This is preferred over Hamming loss [38], used in several
previous studies (e.g. [42735]), as when used with highly imbalanced multi-label
datasets Hamming loss tends to allow the performance on the majority labels
to overwhelm performance on the minority labels. Label-based macro-averaged
F-Score does not suffer from this problem. For every dataset performance is
evaluated using a 2 times 5-fold cross validation experiment. The mean label-
based Macro-averaged F-Score from these experiments are reported.

4.1 Configuring CascadeML

Although there is no hyperparameter tuning required for CascadeML, it does
require some configuration. In the experiments described here, at each iteration,
the candidate pool contained two candidates for each combination of layer type—
successor or sibling—and activation unit type—linear, sigmoid, or tanh. This
made for 12 candidate hidden cascade layers at each iteration. The number of
hidden units in each candidate layer was selected randomly selected as a fraction
of the number of input dimensions, d, following a uniform distribution in (0, 1].

For the output layer of the main network the activation function used was
tanh as the cost function requires bipolar encoding of the labels. During Phase II
of training the outputs of the candidate layers in the pool use a linear activation
function, as explained in Section [3] L2 regularisation was used in all training
phases with regularisation value of 107°. In Phase I and Phase II training early
stopping is used where training stops if the average loss (based on a validation
dataset) calculated over a window of the last 20 training epochs increases from
one iteration to the next. For both Phase I and Phase IT iRProp- is initialised as
recommended in [13]. The maximum number of iterations allowed for iRProp- in
both phases was 2000. To set an upper bound on network growth in CascadeML
two stopping criteria were used: (1) a new cascade layer (sibling or successor)
was added only if did not lead to an increase in the validation loss of the entire
network, and (2) only 20 iterations are allowed.

4.2 Configuring other algorithms

All the algorithms used in the experiment, except CascadeML, underwent a grid
search based hyperparameter tuning using 2 time 5-folds cross validation. For
classifier chains, RAKEL and HOMER, support vector machines |14] with a ra-
dial basis kernel (SVM-RBF) were used as the base classifier. In these cases 12
combinations of the regularisation parameter, C, and the kernel spread, o, were
included the hyperparameter grid. For RAKEL the subset size hyperparameter

1 A version of CascadeML is available at: https://github.com /phoxis/CascadeML

10 Pakrashi and Mac Namee

Table 2: Results of experiments. Rows indicate the datasets, columns indicate
algorithms. Values in cells are mean label-based macro-averaged F-Scores and
the standard deviations followed by relative ranks in parenthesis. Last row are
the average ranks of the corresponding algorithms.

CascadeML RAKEL CC BPMLL HOMER MLKNN

flags 0.6723+0.06 (1) 0.6505+0.04 (2) 0.6405+0.06 (4) 0.5948+0.03 (6) 0.6479+0.04 (3) 0.6009+0.07 (5)
yeast 0.46244+0.01 (1) 0.436740.02 (4) 0.4510+0.01 (2) 0.4357+0.01 (5) 0.4478+0.02 (3) 0.3772+0.01 (6)
scene 0.7606+0.01 (5) 0.801740.01 (2) 0.8040+0.01 (1) 0.7777+0.01 (4) 0.8001£0.02 (3) 0.7424+0.02 (6)
emotions 0.6671+0.02 (2) 0.628140.02 (4) 0.6242+0.01 (5) 0.6899+0.02 (1) 0.6212+0.02 (6) 0.6294+0.03 (3)
medical 0.675840.02 (3) 0.6966+0.03 (1) 0.6924+0.04 (2) 0.5582+0.08 (5) 0.6108+0.05 (4) 0.5398+0.05 (6)
enron 0.285240.02 (3) 0.288240.04 (2) 0.2890+0.03 (1) 0.2806+0.02 (5) 0.2812+0.03 (4) 0.177140.03 (6)
birds 0.481240.03 (1) 0.1812+0.06 (4) 0.1582:0.06 (5) 0.3426:£0.06 (2) 0.1551£0.05 (6) 0.22560.09 (3)
genbase 0.94034+0.02 (3) 0.943240.05 (2) 0.9440+0.04 (1) 0.8149+0.12 (6) 0.9394+0.05 (4) 0.8502+0.05 (5)
cal500 0.2263+0.01 (2) 0.179040.01 (5) 0.1849+0.01 (4) 0.2367+0.02 (1) 0.1988+0.02 (3) 0.1007+0.01 (6)
llog 0.226440.03 (6) 0.299840.05 (1) 0.2916-+0.03 (3) 0.2953+0.06 (2) 0.256140.03 (5) 0.263040.05 (4)
Avg. rank 2.7 2.7 3.7 4.1

(ranging from 2 to 6) was also included, and for HOMER the cluster size hy-
perparameter (ranging from 2 to 6) was also included. For BPMLL the only
hyperparameter in the grid search was the number of units in the hidden layer.
Sizes of 20%, 40%, 60%, 80% and 100% of the number of inputs for each dataset
were explored, as recommended by Zhang et al. [37]. In this case the L2 regu-
larisation coefficient was set to 10~° and a maximum of 10000 iterations were
allowed, based on [19).

The results presented are based on the best performing hyperparameter com-
binations. Finally, the mean label-based Macro-averages F-Scores of 2 times 5-
folds cross validation experiments of the best hyperparameter combination are
reported.

5 Results

The results of the experiments are shown in Table 2] where the columns indicate
the algorithms and the rows indicate the datasets. Each cell of the table shows
the label-based macro-averaged F-Score (higher values are better) followed by
the standard deviation over the cross valition folds. These label-based F-Scores
are computed through extensive cross validated hyperparameter tuning. The
values in the parenthesis indicate the relative ranking (lower values are better)
of the algorithm with respect to the corresponding dataset. The last row of Table
(2] indicates the overall average ranks of the corresponding algorithms.
Tableshows that CascadeML (avg. rank 2.7) performed better than BPMLL
(avg. rank 3.7), HOMER (avg. rank 4.1), MLKNN (avg. rank 5.0) and CC (avg.
rank 2.8), overall. RAKEL had the same overall average rank as CascadeML.
Although RAKEL and CC had similar rank as CascadeML on average, it
must be noted that the label-based macro-averaged F-Score for CC as well as
for the other methods were achieved after doing an extensive hyperparameter
tuning which CascadeML did not require. Besides tuning for C and sigma hy-
perparameter of the underlying SVM-RBFs for RAKEL, CC and HOMER, there
are other hyperparameters which needs to be tuned. For RAKEL the labelset size

CascadeML 11

15
15

1 ---- cascadeML] ---- cascademL

10
10

Frequency

Frequency
5
5

I) il

01 072 03 04 05 0.15 0.20 0.25 0.30
label based macro-averaged F-Scores label based macro—averaged F-Scores
(a) yeast dataset (b) enron dataset

Fig. 2: Histogram of label-based macro-averaged F-Scores achieved from all hy-
perparameter combinations of subset size for RAKEL and C, sigma for the under-
lying SVM-RBFs. The vertical dotted line indicates CascadeML’s performance.

needs to be selected, for CC the chain order needs to be defined, and for HOMER
the clustering algorithma and the cluster size needs to be defined. All of these
hyperparameter increases the hyperparameter search space dimensionality.

Absolute running times or the number of operations are not directly com-
parable as the methods are different from CascadeML and implementations of
the algorithms span different programming languages. However, it is worth not-
ing that the completion of the CC, RAKEL benchmarks took multiple weeks
(with multiple folds run in parallel) due to the hyperparameter tuning involved,
whereas running the equivalent benchmark for CascadeML took less than a week.

The nature of the incremental growth and training in combination with the
fast convergence nature of iRProp- with the L2 regularisation helped the network
to generalise as well as converge faster. Also, note that the candidate unit pool
size was set to 12 and all of them were run in parallel, hence the real runtime of
the candidate training would be the maximum time taken of the 12 of the can-
didates. Therefore, by exploiting the cascade architecture and training process,
as well as using the iRProp- algorithm along with L2 regularisation, CascadeML
was able to maintain a very good level of performance without hyperparameter
tuning.

Figure [3d]shows the training costs for scene dataset for one fold. The vertical
dotted line indicates the addition of a candidate layer to the main network.
After each addition of the candidate network the cost increases but then sharply
decreases at first then continues decreasing steadily.

It is important to note that CascadeML has the advantage of not requiring
hyperparameter tuning. For other algorithms the selection of hyperparameter
values can have a huge impact on performance. For example, Figure [2] shows
the distribution of the label-based macro-averaged F-Scores for different combi-
nations of label subset size, C and sigma values the underlying SVM-RBFs of
RAKEL for the yeast and enron datasets. Note that the F-Score values in Figure

12

Pakrashi and Mac Namee

o | [
= ; T
< <]
- N
ol Tl
£ 0 g
g ‘ - S w
< ‘ S — —
234 —_ : i
s- 5 2 Q - : -
(] H] H ;
o 3 : ;
st o i i
o 2 i :
@ © 0 : H
© i c o —
] 3 ﬂ 23 T E H 3 H -
b} : : !
T - - R -
€ T — ; ‘ 5
- D \:’ 0 | Q — L = B Q
o s To |8 - = I
[%2} ‘[77’ () (%] © c %] [0} o {=2] l‘l) c“'n‘ f‘D (‘I) (;5 ‘C l‘/J (‘D (‘3 éD
g § § § &£ &2 8 8§ B =2 g § § § £ 2 £ g 8 =
= > 8§ 8 8 & ° 2 % = > % B3 8 & ° 2 %
E E g § € 5
(a) Cascaded depth (b) Total hidden nodes scaled by input size
o |
—
o
o]
"
[
3 o |
< (=]
c
Sw |
S :
< ! - h |
2 : 8o | \ \
[} oo ‘ A
2 \ N ‘
5 i \ \ \ I
E i \ ‘ \
E NS R 'R (U | Y S
< ; 3
Q L o
7] ., !
0 |
o o | — Taining
s | — \Validation
© | New layer
2 [3 8 10 12 14 16 [50 100 150 200
Depth Overall Phase | iterations

(c) All datasets, all folds depth vs. scaled
numbmer of hidden nodes

(d) Training costs for a fold for scene

Fig. 3: CascadeML trained network properties.

vary significantly. For the yeast dataset, CascadeML performed the best, and
for enron dataset only 2.1 % of the hyperparameter attained better result than
CascadeML. In general the distribution skews towards models with relatively
poorer performance. CascadeML attained similar high values of performance in
both the cases (0.4624 for the yeast dataset and 0.2852 for the enron datset)
without any need for hyperparameter tuning.

Table [2] shows that, CascadeML is very competitive across different datasets
compared to state-of-the-art algorithms while not requiring hyperparameter tun-
ing.

CascadeML 13

Table 3: Summary of the trained CascadeML network architecture for all
datasets.

Cascade Scaled hidden

Depth nodes
flags 8.30 £+ 2.87 0.47 £ 0.15
yeast 3.80 £ 0.79 1.16 + 0.22
scene 5.10 £+ 1.85 0.89 + 0.28
emotions 5.00 £ 2.58 1.04 £ 0.32
medical 6.80 £ 3.16 0.80 £+ 0.20
enron 3.60 £ 0.70 1.16 + 0.21
birds 7.60 £+ 1.58 0.64 £+ 0.14
genbase 8.40 £ 3.24 1.04 £+ 0.49
cal500 6.40 £+ 2.84 1.34 £ 0.60
llog 8.10 £ 3.45 0.67 £+ 0.20

CascadeML learns architectures with different number of nodes and activa-
tion functions per layer as shown in Table [3| and Figure [3| for every dataset over
multiple folds. In Table [3] Cascade depth indicates the depth of the cascade net-
work, and Scaled hidden nodes indicate the number of total hidden units divided
by the number of input units for each dataset. Figure [3a] shows the boxplots of
the learnet network depths over folds for each dataset and Figure shows the
boxplots for the scaled hidden nodes. Note that although the standard deviations
of the performances in Table [2] are small, the trained layer depth and the scaled
hidden nodes have high standard deviations. Figure [3c| shows a scatterplot of
the depths and the scaled hidden nodes values over all datasets and folds. This
indicates that the learned networks were either deep with fewer nodes per layer,
or shallow but more nodes per layer, therefore having a similar network capacity
and hence the F-Score performance over the folds were similar, although the
architecture learned were very different.

A network architecture example learned by CascadeML on the yeast dataset
is shown in Figure [d For this specific execution, three cascaded layers were
selected with L1 having 220 units and a tanh activation, L2 having 64 units and
a linear activation, and L3 having 26 units and a linear activation. yeast

6 Conclusion and Future Work

The work introduces a neural network algorithm, CascadeML, for multi-label
classification based on the cascade architecture, which grows the architecture as
it trains and takes label associations into account. Except setting some bounds
of the hyperparameters, the method omits the requirement of hyperparameter
tuning as it automatically determines the architecture, and uses an adaptive first
order gradient descent algorithm, iRProp-.

In an evaluation experiment CascadeML was shown to perform competitively
to state-of-the-art multi-label classification algorithms, where all the other multi-
label algorithms were hyperparameter tuned. CascadeML performed better on
an average classifier chains, HOMER with RBF-SVM, BPMLL and MLKNN.
RAKEL had the same overall averarge rank compared to CascadeML, but it did
not require the extensive hyperparameter tuning.

14 Pakrashi and Mac Namee

103x26
103 x 64
290\ 26 216_:1.n|ts
64 units act=linear
act=linear
64 x 26
220 units Cai%ade
act=tanh
220 x 64
X Cascade
L2
103 input 26 x 14
units 64 x 14
Cascade 14 units
108x12| L1 act=tanh
220 x 14.
Input Output
03 x 1
layer I N layer

Fig.4: An example network generated by a run of CascadeML on the yeast
dataset. The rectangles represents layers, labelled with the number of nodes and
the selected activation (act) function the layers. The lines connecting the layers
indicate full connection and the text indicates the number of weights involved
in the corresponding connection.

CascadeML is the first automatic neural network algorithm with a compet-
itive performance to hyperparameter tuned state-of-the-art multi-label classi-
fication methods, although CascadeML’s performance can be improved in the
cases where it does perform poorly. A limitation of the BPMLL loss function
used in CascadeML is that it cannot scale with increasing number labels [17].
As the comparisons are pairwise, as the number of labels increase the computa-
tion becomes slow like BPMLL. Therefore, it would be interesting to investigate
alternative loss functions that can still take account of label associations with-
out the need for expensive pairwise comparisons. Also, it would be interesting
to examine the patterns in which layers grow during CascadeML so as different
mechanisms for adding new layers could be introduced.

References

1. Baluja, S., Fahlman, S.: Reducing network depth in the cascade-correlation learning
architecture. Tech. Rep. CMU-CS-94-209, Carnegie Mellon University, Pittsburgh,
PA (October 1994)

2. Charte, F., Rivera, A., del Jesus, M.J., Herrera, F.: Concurrence among imbal-
anced labels and its influence on multilabel resampling algorithms. In: Polycarpou,
M., de Carvalho, A.C.P.L.F., Pan, J.S., Wozniak, M., Quintian, H., Corchado, E.
(eds.) Hybrid Artificial Intelligence Systems. pp. 110-121. Springer International
Publishing, Cham (2014)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

CascadeML 15

Chen, Z., Chi, Z., Fu, H., Feng, D.: Multi-instance multi-label image classification:
A neural approach. Neurocomputing 99, 298 — 306 (2013)

Cheng, W., Hullermeier, E.: Combining instance-based learning and logistic regres-
sion for multilabel classification. Machine Learning 76(2-3), 211-225 (2009)
Crammer, K., Singer, Y.: A family of additive online algorithms for category rank-
ing. J. Mach. Learn. Res. 3, 1025-1058 (Mar 2003)

Fahlman, S.E.: An empirical study of learning speed in back-propagation networks.
Tech. rep. (1988)

Fahlman, S.E., Lebiere, C.: The cascade-correlation learning architecture. In:
Touretzky, D.S. (ed.) Advances in Neural Information Processing Systems 2, pp.
524-532. Morgan-Kaufmann (1990)

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.:
Efficient and robust automated machine learning. In: Advances in Neural Informa-
tion Processing Systems 28, pp. 2962-2970 (2015)

Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016),
http://www.deeplearningbook.org

Grodzicki, R., Mardziuk, J., Wang, L.: Improved multilabel classification with
neural networks. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C.
(eds.) Parallel Problem Solving from Nature — PPSN X. pp. 409-416. Springer
Berlin Heidelberg, Berlin, Heidelberg (2008)

Hansen, L.K., Pedersen, M.W.: Controlled growth of cascade correlation nets. In:
Marinaro, M., Morasso, P.G. (eds.) ICANN ’94. pp. 797-800. Springer London,
London (1994)

Herrera, F., Charte, F., Rivera, A.J., del Jesas, M.J.: Multilabel Classification -
Problem Analysis, Metrics and Techniques. Springer (2016)

Igel, C., Hiisken, M.: Improving the rprop learning algorithm. In: Proceedings
of the second international ICSC symposium on neural computation (NC 2000).
vol. 2000, pp. 115-121. Citeseer (2000)

Kelleher, J.D., Mac Namee, B., D’Arcy, A.: Fundamentals of Machine Learning for
Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies. The
MIT Press (2015)

Madjarov, G., Kocev, D., Gjorgjevikj, D., DAYeroski, S.: An extensive experimental
comparison of methods for multi-label learning. Pattern Recognition 45(9), 3084
- 3104 (2012)

Mencia, E.L., Furnkranz, J.: Pairwise learning of multilabel classifications with
perceptrons. In: 2008 IEEE International Joint Conference on Neural Networks
(IEEE World Congress on Computational Intelligence). pp. 28992906 (June 2008)
Nam, J., Kim, J., Loza Mencia, E., Gurevych, 1., Fiirnkranz, J.: Large-scale multi-
label text classification — revisiting neural networks. In: Calders, T., Esposito,
F., Hiillermeier, E., Meo, R. (eds.) Machine Learning and Knowledge Discovery in
Databases. pp. 437-452. Springer Berlin Heidelberg (2014)

Nissen, S.: Large scale reinforcement learning using g-sarsa (\) and cascading neu-
ral networks. Unpublished masters thesis, Department of Computer Science, Uni-
versity of Copenhagen, Kgbenhavn, Denmark (2007)

Pakrashi, A., Greene, D., Mac Namee, B.: Benchmarking multi-label classifica-
tion algorithms. In: 24th Irish Conference on Artificial Intelligence and Cognitive
Science (AICS’16), Dublin, Ireland, 20-21 September 2016. CEUR Workshop Pro-
ceedings (2016)

Phatak, D.S., Koren, I.: Connectivity and performance tradeoffs in the cascade
correlation learning architecture. IEEE Transactions on Neural Networks 5(6),
930-935 (Nov 1994)

16

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Pakrashi and Mac Namee

Prechelt, L.: Investigation of the cascor family of learning algorithms. Neural Net-
works 10(5), 885 — 896 (1997)

Read, J., Pérez-Cruz, F.: Deep learning for multi-label classification. CoRR
abs/1502.05988 (2015)

Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label
classification. Machine Learning 85(3), 333-359 (2011)

Rojas, R.: Neural Networks: A Systematic Introduction. Springer-Verlag, Berlin,
Heidelberg (1996)

de Sa, A.G.C., Freitas, A.A., Pappa, G.L.: Automated selection and configuration
of multi-label classification algorithms with grammar-based genetic programming.
In: PPSN (2018)

de Sa, A.G.C., Pappa, G.L., Freitas, A.A.: Towards a method for automatically
selecting and configuring multi-label classification algorithms. In: GECCO (2017)
Spyromitros, E., Tsoumakas, G., Vlahavas, I.: An empirical study of lazy multilabel
classification algorithms. In: Proc. 5th Hellenic Conference on Artificial Intelligence
(SETN 2008) (2008)

Tsoumakas, G., Katakis, 1., Vlahavas, 1.: Effective and efficient multilabel clas-
sification in domains with large number of labels. In: Proc. ECML/PKDD 2008
Workshop on Mining Multidimensional Data (MMD’08). vol. 21, pp. 53-59. sn
(2008)

Tsoumakas, G., Spyromitros-Xioufis, E., Vilcek, J., Vlahavas, I.: Mulan: A java
library for multi-label learning. Journal of Machine Learning Research 12, 2411—
2414 (2011)

Tsoumakas, G., Vlahavas, I.P.: Random k -labelsets: An ensemble method for mul-
tilabel classification. In: ECML (2007)

Waugh, S., Adams, A.: Connection strategies in cascade-correlation. In: The Fifth
Australian Conference on Neural Networks. pp. 1-4 (1994)

Wei, Y., Xia, W., Huang, J., Ni, B., Dong, J., Zhao, Y., Yan, S.: CNN: single-label
to multi-label. CoRR abs/1406.5726 (2014)

Wever, M., Mohr, F., Hiilllermeier, E.: Automated multi-label classification based
on ML-Plan. CoRR abs/1811.04060 (2018)

Yu, Q., Wang, J., Zhang, S., Gong, Y., Zhao, J.: Combining local and global
hypotheses in deep neural network for multi-label image classification. Neurocom-
puting 235, 38 — 45 (2017)

Zhang, M.L., Zhou, Z.H.: ML-kNN: A lazy learning approach to multi-label learn-
ing. Pattern Recognition 40, 2038-2048 (2007)

Zhang, M.L.: ML-RBF: Rbf neural networks for multi-label learning. Neural Pro-
cessing Letters 29(2), 61-74 (Apr 2009)

Zhang, M.L., Zhou, Z.H.: Multilabel neural networks with applications to func-
tional genomics and text categorization. IEEE Trans. on Knowl. and Data Eng.
18(10), 1338-1351 (Oct 2006)

Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. IEEE trans-
actions on knowledge and data engineering 26(8), 1819-1837 (2014)

Zhu, J., Liao, S., Lei, Z., Li, S.Z.: Multi-label convolutional neural network based
pedestrian attributeA classification. Image and Vision Computing 58, 224 — 229
(2017)

Zhuang, N.; Yan, Y., Chen, S., Wang, H., Shen, C.: Multi-label learning based deep
transfer neural network for facial attribute classification. Pattern Recognition 80,
225 — 240 (2018)

https://www.researchgate.net/publication/332630595

	CascadeML: An Automatic Neural Network Architecture Evolution and Training Algorithm for Multi-label Classification

