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ABSTRACT The number of web applications for both personal and business use will continue to increase.
The popularity of web applications has grown, increasing the need to estimate Quality of Experience for
web applications (Web QoE). Web QoE helps providers to understand how their end-users perceive quality
and point towards areas to improve. Waiting time has been proven to have a significant influence on user
satisfaction. Most studies in the field of Web QoE have focused on modelling Web QoE for the user’s first
interactionwith the application, e.g., thewaiting time for the first page load to complete. This does not include
a user’s subsequent interactions with the application. Users keep interacting with the application beyond the
first page load resulting in an experience that consists of a series of waiting times. In this study, we have
chosen web maps as a use case to investigate how to measure waiting time for a user’s interactions across
a web browsing session, and to measure the correlation between waiting time and user-reported perceived
quality. We provide a short survey of existingWeb QoE estimation metrics and models. We then propose two
new measures: interactive Load Time (iLT) and Total Completed interactive Load (TCiL) to establish the
waiting time associated with a web application user’s interactions. A subjective study confirms a logarithmic
relationship for interactive web application sessions between iLT and perceived quality. We compare the
correlation between QoE for iLT and the state of the art, non-interactive equivalent, Page Load Time
(PLT)/Waiting Time. We demonstrate how the iLT/QoE fitting curve deviates from PLT/QoE. The number
of clicks in completing tasks and TCiL are explored to explain the connections between user’s interactions
behaviour and the perceived quality.

INDEX TERMS Web QoE, interactive QoE, quality measurement, quality metrics, time metrics, waiting
time, iLT, TCiL.

I. INTRODUCTION
Web-based application performance relies heavily on Quality
of Service (QoS) metrics for optimised network parameters.
These optimization techniques do not consider human fac-
tors and parameter adjustments may not result in perceptible
quality improvements from a user’s perspective [1]. Qual-
ity of Experience (QoE) considers user experience factors
beyond the service [2], i.e., context, user, content and system
factors (Figure 1). QoE provides further insights into the
user’s quality perception and their satisfaction [3], [4]. The
relationship between QoE and QoS allows us to understand
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how to improve the end-to-end performance with respect to
user satisfaction [5].

Web application quality can be measured at different lev-
els: network, application, client and end-user (see Figure 2).
Except for the end-user level, objective quality metrics
(see Table 1) can be deployed to monitor QoS. Estimating
end-user perceived quality requires subjective experiments
which are expensive and time-consuming. In order to include
the end user satisfaction in objective metrics, researchers
have been working to develop mapping functions between
QoS-based objective metrics and the subjective QoE exper-
imental results [5].

These mapping functions can help identify the interd-
ependence between factors such as network and
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FIGURE 1. Illustration of quality of experience influence factors.
Considering QoE of Web applications, System/Service factors include the
network and computational components, Content refers to how the
information is presented (i.e. media type, resolution, content length),
Context covers the subject and the theme of the content (i.e. business,
leisure, educational). Finally, The User covers the user’s experience and
expectations from the web application.

FIGURE 2. Illustration of quality measurement in the context of Web QoE.
The mapping between quality metrics can help to understand the
interdependence between factors.

application factors. For example, amapping function between
a network QoS metric and an application Key Performance
Indicator (KPI) or application KPIs to experimental findings
of subjective perceived quality [6], [7]. The mapping between
metrics facilitates the development of objective metrics and
models that explain the perceived quality (QoE) with a lower
cost and overhead [5].

To date, an extensive amount of research has been car-
ried out on the relationship between different influencing
factors of QoE for Voice, Video and Multimedia applica-
tions [8], [9]. More recently, QoE has been applied to a
broader range of applications including web-based appli-
cations (Web QoE) [4]. Web QoE refers to the quality of
experience of web services that are based on the HTTP
protocol and are accessed via a web browser [10]. Web
shopping, downloading files or web mapping applications
are familiar examples of such applications. Web applications

follow a request-response paradigm in which the user makes
a request, the server processes the request and issues a
response. The network transports data between web server
and user’s browser. In contrast to audio- and video-based
application QoE, where psycho-acoustic and psycho-visual
are the most influential factors, the amount of time that the
user waits to receive the information is a key factor impacting
Web QoE [10], [11].

A common approach for Web QoE estimation is based on
analysing the relationship between waiting time metrics and
the end-user’s perceived quality [4], [12]. Over time, web
technologies have evolved to allow developers to create new
generations of interactive and immersive web applications.
For example, AJAX (Asynchronous JavaScript And XML)
Push and HTML5 Websockets allow a web server to push
data to a browser, without the browser explicitly requesting
it. The user interacts with the web page and receives more
content without making a specific request to retrieve a new
page. The majority of the existing QoE estimation metrics,
however, are defined based on the first page load and do not
reflect the user’s subsequent interactions across the browsing
session (Figure 3). For clarity, the term ‘‘user interaction’’ is
used in this paper to refer to a cycle, including a user’s action
and its response. An interaction is initiated when an action is
made, and the user is waiting for a response. i.e. click on a
linked object, submitting a search form, typing in a text-box
with AJAX auto-complete feature.

FIGURE 3. Illustration of quality measurement metrics. The majority of
objective quality metrics are defined based on the first-page load.
However, the web user’s interactions continue to happen past the PLT.

In this paper, we investigate how to measure waiting time
related to the web user’s interactions beyond the first page
load. This measurement needs to be meaningful to QoE
and the perceived quality. We first provide a short survey
and background information on QoE estimation metrics and
models. We explore and categorise the existing objective time
metrics. We continue by reviewing the Web QoE models and
describe how the models use time metrics to estimate the
perceived quality. Through a literature survey, we explain
the evolution of web technologies and establish the need
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for a time metric that covers users’ interactions during a
web browsing session. We then introduce interactive Load
Time (iLT) and Total Completed interactive Load (TCiL)
metrics to measure the waiting time associated with the user’s
interactions. We consider web mapping application as a use
case and depict the test-bed and methodology used for the
subjective study. The subjective study confirms the loga-
rithmic relationship between iLT and the perceived quality.
It follows by a correlation comparison between iLT and the
non-interactive equivalent state of the art Page Load Time
(PLT). We use TCiL to demonstrate that the fitting curve
of iLT differs from PLT due to the continuous interactions
of the users. By comparing TCiL and number of clicks,
we show that TCiL provides more insights on the perceived
quality in comparison to the number of clicks. TCiL can
be utilised to understand the threshold of the tolerance of
user’s waiting time. Finally, we summarise and discuss the
challenges involved in measuring iLT and TCiL, our thoughts
and possible directions for future studies.

II. RELATED WORKS
Quality metrics and models are the key components of Web
QoE analysis. Quality metrics are used to measure the effi-
ciency and performance of Web applications. QoE models
utilise objective quality metrics to estimate the perceived
quality of the end-users [3], [13]. Perceived quality is widely
measured in the domain of QoE using subjective user ratings
where the subject rates quality on 5-point Absolute Category
Rating (ACR) scale (1:Bad, 2:Poor, 3:Fair, 4:Good, 5:Excel-
lent) [14]. Using the results from a group of test subjects,
aMeanOpinion Score (MOS) is expressed as a single rational
number, computed as the arithmetic mean of the subjective
ratings.

Researchers utilise different variations of waiting time
metrics for Web QoE analysis. In this section, we explore
the time metrics available to measure waiting time for web
applications. It is followed by a review of the existing Web
QoE models that incorporate the time metrics.

A. WAITING TIME METRICS
Waiting time metrics in web applications are commonly used
to estimate the user’s satisfaction [15]. Web QoE researchers
consider waiting time as an objective and measurable metric
to build a mapping function between system/technical param-
eters and the subjective user’s QoE. Web QoE is often simply
estimated as a function of waiting time [13].

In Table 1 we have summarized the objective time metrics
used in theWeb QoE estimation models [16], [17]. Each met-
ric measures the waiting time for a particular event occurring
over the course of web application usage. The time metrics
are divided into two distinct categories:
• Time instant metrics: Computed based on measuring
the time instant of an event. For example, the time that a
web page is completely loaded (PLT).

• Time integral metrics:Used to quantify how fast a web
page is loaded by integrating all events of a given type

TABLE 1. The common time instant and integral metrics measured
in seconds. The objective metrics are used to build a model for the
evaluation of the perceived quality of web applications.

tracked during the progress of a web page. For instance,
the speed of loading a page starting from navigating to
a URL until the time that browser has finished painting
the visible part of the screen.

1) TIME INSTANT METRICS
Time instant metrics are simple to measure. They are used
to measure the waiting time by tracking the amount of time
the users wait until a particular event occurs. For instance,
when a user first navigates to a web site, a TCP connection
to a web server has to be made. The connection introduces
a delay in data transport. As shown in Table 1, Time to
First Byte (TTFB) is used to measure the time at which the
client receives the first byte from the server. The browser
finishes constructing the Document Object Model (DOM)
at Time to DOM Load. The browser then starts rendering
the web page at the Time to First Paint. At the Time of
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First Contentful Paint, the first object has completed load-
ing and rendering the information to the browser screen.
It is followed by the Time to First Meaningful Paint which
measures the time in which the browser has meaningfully
painted the visible part of the browser on user’s screen (cur-
rent viewport). The browser completes painting the current
viewport at the Above-The-Fold (ATF) time. Finally, it fin-
ishes loading all the visual and non-visual objects at the time
of PLT.

Time to Click (TTC) is defined to measure the first inter-
action of the user. The event usually occurs between Time
to First Meaningful Paint and PLT [13]. However, TTC may
fail in measuring the responsiveness of a web page. For
example, If the browser’s main thread is still busy loading
scripts, the page will no respond to the user’s clicks. Time
to Interactive (TTI) [18] tries to cover TTC’s shortcomings
by measuring how long it takes for a web page to become
interactive. In [18] the term ‘interactive’ is characterised
based on the following criteria:
• The page has already displayed meaningful content on
the user’s screen.

• All the applicable web elements are responsive. i.e.
if there is a clickable object, all the event handlers asso-
ciated with the object is loaded, and the user can click
on the object.

• The page responds to the user interactions in 50 ms.
i.e. if the user clicks on a button, the user can see the
button is pressed in 50 ms.

TTI is a useful metric that shows the user experience from
the interactivity point of view. For example, a web page
might appear to be fully loaded, but the user is still unable
to click on any object. Similarly, First Input Delay (FID) is
a metric that measures the first impressions of a web page
from an interactivity perspective [19]. While TTI measures
how long it takes to become interactive, FID measures the
delay that users experience when a meaningful content is
displayed, but the web page is no yet interactive [18], [19].
However, these metrics are only effective in a page-by-page
navigation model. In Section IV, we propose two newmetrics
that expands the quantification of user’s interactivity beyond
the first page load by separating the time measurement based
on the user’s actions.

Despite the prevalence of time instant metrics for the evalu-
ation of the perceived quality, suchmetrics have proven short-
comings [13]. Themost important limitationwith time instant
metrics is that the measured user experience depends only on
the wait associated with retrieving and displaying the web
page. However, during this process other events occur that
a single time instant metric does not capture. In [13], [20],
the authors demonstrated that estimating QoE using the same
time instant metric for two different web applications can
yield differing results. For instance, PLT is a useful metric
to estimate QoE of a web page with contents limited to the
current screen viewport (i.e. no scrolling required to see the
full page). However, for a web page with extended content,
ATF is more effective. To fill this gap and cover all the events

in the web page waterfall, Time Integral Metrics have been
proposed [21].

2) TIME INTEGRAL METRICS
In 2012, Google developed a time integral metric called
Speed Index (SI) [21]. SI is a page load performance metric
that represents how fast (in milliseconds) the visible parts of
a web page are populated [20]. The lower the SI score is,
the better the user’s perception of performance. Time Integral
Metrics use the following function to estimate the loading
speed:

X =
∫ tend

0
(1− x(t))dt (1)

where X is the value of the speed metric, tend is the time the
last event has happened, and x(t) ∈ [0, 1] is the time evolution
of the progress to reach tend. For example, ATF can be defined
as the tend time while x(t) is the completion ratio of the web
page over time. The completion ratio of SI is calculated based
on the Mean Pixel Histogram Difference (MPHD) between
the current state of the web page at time t and the state of the
page at the ATF time. The Perceptual Speed Index (PSI) uses
Structured Similarity Index (SSIM) to compute the comple-
tion ratio of the web page [22].

Both SI and PSI use a series of snapshots (at a rate
of 10 frames per second) from a web browsing session.
The frames are analysed in the same sequence and time
order to infer a visual completion fraction. The visual
progress calculation is computationally expensive. Therefore,
the researchers used the SI concept and proposed ByteIn-
dex (BI) and ObjectIndex (OI) [20]. OI and BI use the
browsers heuristics to estimate the loading speed. BI uses the
ratio of byte completion as x(t) starting from t0 until tend and
OI uses the ratio of object completion as x(t) starting from t0
until tend. BI and OI can consider different state of the page
as tend (i.e. ATF or PLT are commonly used as tend).

If we look at the time integral metrics from an interactivity
perspective of the first page load, the metrics can be bounded
to TTI, TTC or FID and bring user’s interactivity into account.
However, the integral function of such metrics gives a lower
weight to the delay occurred beyond ATF. Consequently,
the measurement may not accurately quantify the speed of
loading when a page is loaded but not yet responsive (the
main thread of browser is still busy). Furthermore, The lit-
erature shows that the time integral metrics are difficult to
measure and computationally expensive but outperform the
predictive capability of time instant metrics for Web QoE
estimation [13], [16].

B. WEB QoE MODELS
Much of the current literature studyingWeb QoE has focused
attention on the development of PLT-based QoE models.
In [23], the authors propose a generic QoE model where
QoE and technical QoS metrics are correlated through an
exponential relationship referred to as the IQX (exponen-
tial Interdependency of Quality of eXperience and QoS).
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The authors evaluated the model for voice, video and web
applications. Using waiting time as an objective metric leads
to the following QoE IQX equation:

QoEIQX(t) = αe−βt + γ. (2)

where t is the waiting time measured by a time instant or
time integral metric, α, β and γ are an empirically derived
constants. The constants are tuned in accordance with the
context (i.e Web, VOIP, Video). The authors illustrate that
when the current level of QoE is high, a small variation
in the QoS is perceptually noticeable. Thus, yielding to an
exponential relationship between QoE and waiting time.

Egger et al. [24] developed a Web QoE estimation model
based on the Weber-Fechner law, which is a human per-
ception law drawing from the field of psychophysics [25].
In [24], the proposed Web QoE model is derived from a
hypothesis called WQL. WQL assumes that the relationship
betweenWaiting time and itsQoE evaluation on a linear ACR
scale is Logarithmic. The authors used the following fitting
function and validated the WQL hypothesis:

QoEWQL
= a− bln(t) (3)

where t refers to the waiting time measured by a time instant
or time integral metric, a and b are derived by minimiz-
ing the least square errors between the fitting function and
the MOS values. Egger et al. [24] state that while WQL
is valid for simple waiting time transactions (e.g. PLT),
it is not sufficiently sophisticated for use with interactive
web applications. The authors explain that according to the
Weber-Fechner Law, the perception of page load time devi-
ates from the objectively measured page load time, i.e., the
user may perceive a two seconds page load time as three sec-
onds. Thus, the modelling of web browsing QoE have to be
reviewed and redesigned.

In [24], [26], QoE is considered as a function of PLT. Both
studies demonstrate that PLT has a significant effect on the
user’s overall Web QoE.

Gao et al. [22] explore different aspects of the web page
loading process. The authors investigate the most influential
factor in perceiving the loading speed. The authors studied
the perceived loading performance of ATF for 500 websites.
They ran a subjective study and presented two web-pages
side-by-side using pairwise comparison to identify the faster
page. They found that commonly used time instant met-
rics such as PLT and TTFB failed to accurately predict the
end-user perception. Interestingly, their results show that the
users can discriminate the speed of two web pages before the
‘‘VisualComplete’’ event (i.e. ATF). Gao et al. [22] conclude
that in addition to PLT, the visual aspect of the web content
also has a significant influence on the perceived loading
speed.

In [13], the authors examine the relationship between
Speed Index and Web QoE. They utilise an existing public
dataset to establish the inter-dependency between SI and
MOS values using the IQX and WQL models. The results
show that the time integral metrics bounded to ATF are

more effective than pure PLT as inputs used to estimate Web
QoE [13].

C. MEMORY EFFECTS AND WEB QoE
Memory and recency effects are psychological phenomena
which are important to Web QoE. Recency effects caused by
short-term memory; it occurs when the latest perceived infor-
mation is themost influential factor in human judgement [27].

In the field of Web QoE, researchers have been investi-
gating the influence of memory and recency effect on the
perceived quality. In [10], [28], the authors explored the influ-
ence of the users’ psychological factors on Web QoE. They
have conducted user studies to investigate how the users’
previous experience, memory and recency effects have an
impact on Web QoE. Their research shows the user memory
influences the user perception of waiting times. In particular,
the authors establish that in addition to the current level of
QoS, quality of the last downloaded web page has a sig-
nificant influence on the user’s QoE (recency effect). Thus,
the memory effect is a key influential factor impacting Web
QoE.

In [10], the authors propose three different QoE mod-
els that include the implications of the memory effect and
the time-dynamics of human perception into account. The
authors have utilised Support Vector Machines (SVM), iter-
ative exponential regressions, and two-dimensional Hidden
Markov Models (HMM) to extended the basic QoE mod-
els and take memory effect into account. The authors also
established that the memory effect steps down if the user
experiences the same waiting time for several web pages in a
row.

III. WEB EVOLUTION AND QoE CHALLENGES
Over the years, web applications have been transitioning
from traditional models which use static pages to dynamic
user interfaces with real-time and collaborative features
(Figure 4). It is now common for web applications to link
or embed information from other web applications such as

FIGURE 4. Illustration of traditional web model vs AJAX web model.
In traditional web models, an HTML request results in a full page refresh.
In an AJAX Web model, the user requests a new content using XHR
request and the respective contents/objects will be retrieved and
displayed dynamically (an in-place update).
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social media or open data platforms [29]. This contrasts
with the traditional web model that is based on a multi-page
interface where every request results in a full page refresh.

AJAX andComet programming are now commonly used in
the development of interactive web applications [30]. These
techniques eliminate the page-by-page navigation limitations
of the traditional web model. A single-page Comet/AJAX
application loads data and displays page components inde-
pendently. A user action can result in a partial update of the
web page while other page components remain visible. This
is refered to as an in-place update. This influences the level
of interactivity, responsiveness and user satisfaction [31].
The AJAX web model incorporates XML, JavaScript, HTTP
and XHTML, combining together to facilitate asynchronous
communication between client and web server.

Web mapping applications are an example of applications
using AJAX, e.g. Google Maps has been integrated into geo-
graphic information system applications using AJAX [32].
The interactive nature of web mapping applications requires
user requests to be quickly actioned in order to maintain
relevance, flow experience and user attention [33]. Using
AJAX allows web maps to load progressively, and each time
a user re-centers the map (pans), somemap sub-images (tiles)
are kept for display while new tiles are fetched to update the
view using XMLHttpRequest (XHR).

Although the evolution of web applications elevate the
level of interactivity, responsiveness and user satisfaction, this
has made web applications complex entities leading to more
challenges for estimating the QoE [11]. The commonly used
metric in QoE models (illustrated in Table 1) are based on
the first-page load. However, in a single page interactive web
application, the user keeps interacting with the applications
and results in a series of XHR, Websocket or HTTP/2 Push
transactions. There is a waiting time associated with these
transactions. Therefore, it is challenging to represent the
waiting time for the web QoE estimation. For example, in tra-
ditional web models there was a single PLT associated with
the page load, but in AJAX web models objects are often
dynamically generated/displayed during and after the PLT.

Web applications have a flow experience that spans the
first load and subsequent interactions. Current time metrics
do not adequately capture the impact of user interactions on
perceived quality.

IV. MOTIVATION
A growing body of literature has investigated modelling Web
QoE using time instant and integral metrics [4]. The models
generally utilise the first page load metrics. However, there
has been little quantitative analysis on measuring waiting
time caused by the user’s subsequent interactions and its
impact on the user’s QoE. As we explained in the previous
sections, the critical aspects of our motivations can be sum-
marised as follows:
• When a user navigates a web application, the initial
page load occurs, then the user starts interacting with the
page elements. The duration of interactions is proven to

be a significant part of the total web browsing session
time [34]. Thus, the user’s interactions needs to be con-
sidered in the perceived quality estimation.

• Interactive web application use technologies such as
AJAX,Web Sockets and HTTP/2. The user’s interaction
causes a waiting time that does not reload the entire
page and is proportional to the main PLT or ATF. The
interactive waiting time can be caused due to numerous
reasons: (1) an XHR transaction in AJAX web appli-
cations, (2) HTTP/2 push messages or (3) a client-side
navigation process (i.e., visualising an SVG image, load-
ing a cached content or a computational process using
client-side scripts). The current waiting time metrics are
not covering interactive waiting time.

• SI and PSI metrics do not include browsing events.
Instead, they are looking at how fast the ATF of the
page gets painted to the browser. In an interactive web
application, the user’s interaction does not reload the
entire page. Therefore, using SI to measure the loading
speed, results in an inaccurate calculation of the visual
progress. Furthermore, due to the partial update of the
content, it is challenging to define when the ATF is
completed.

These reasons motivated us to explore a set of
non-computationally expensive metrics that can be used to
predict Web QoE for a user’s interaction. We introduce two
new metrics associated with the user’s interactions:

1) interactive Load Time (iLT).
2) Total Completed interactive Load (TCiL).

A. INTERACTIVE LOAD TIME (iLT)
Interactive Load Time (iLT) is the time taken to complete an
interactive load starting from a user interaction (e.g. a mouse
click) to the completed update of the web application dis-
play. It is a client-side metric that measures the waiting time
caused by a single interaction of the user beyond the ATF.
Each interaction of the web user may initiate n number of
overlapping events (E). For example, when a web mapping
application user instigates a single zoom action, multiple
XHR requests will be sent to the webserver. The webserver
then transfers the required new tiles and information. Impor-
tantly, some information may be loaded from the local cache.
As shown in Figure 5, iLT covers all the events for an inter-
action. We compute iLT as

iLT = max{Enet} −min{Enst} (4)

where Enet is the time that data processing and visualisation
for the eventEn of a particular interaction is completed (i.e. all
the non-visual and visual elements of the interaction are
loaded and rendered). Enst is the time that the first event of
the user’s interaction is initiated (i.e. when the user clicks
on an element). The min operator finds the first event based
on the time that the events are started (st). The max oper-
ator looks at the events ending times (et) and finds the last
event.
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FIGURE 5. Illustration of iLT measurement based on the user’s interaction
and the web events. iLT is measured by computing the duration between
starting time of the first event Enst until the ending time of the last
event Enet .

B. TOTAL COMPLETED INTERACTIVE LOAD (TCiL)
Total Completed interactive Load (TCiL) represents the num-
ber of times that the iLT is successfully measured for the
entire session time. TCiL is computed based on Equation 5:

TCiL =
n∑
j=1

nj where nj =

{
1 if iLTnj ∈ R
0 otherwise

(5)

where n represents the total number of user interactions, j is
a counter and nj refers to an interaction number. The value of
nj will be one, if iLT has a measured value.
In a browsing session, the user will have multiple inter-

actions, and an iLT will be measured for each interaction.
However, the user may not wait for the responses to get com-
pleted before initiating the next interaction. This interrupts
the response and prevents us from determining Enet and a
complete iLT measurement.

To investigate the effectiveness of the above metrics in
explaining the relationship between interactive waiting time
and the perceived quality, we have chosen to use a web map-
ping application as a representative use case. Many popular
web mapping applications use raster image tiles to present a
map view that can be zoomed or panned. When a user takes
an action (i.e., zoom in, zoom out, pan or searching), it results
in several XHR transactions to load the tiles. Some map tiles
will be fetched from the server, and some tiles will be shown
from the browser’s cached objects. In this case, iLT refers to
the amount of time that it takes for the map to load the map
tiles in the client’s browser.

In this research, by running a subjective experiment,
we aim to establish a quantitative relationship between iLT
and the user’s QoE. The result of our study demonstrates
how the relationship between iLT and QoE deviates from
the state-of-the-art PLT. We also answer whether the iLT can
accurately measure the waiting time caused by the user’s
interactions or not. Additionally, we compare TCiL and

FIGURE 6. The experimental platform developed for the user study. The
platform simulated a real network environment and consisted of 2 node
servers and a client machine. The network is dynamically manipulated to
increase the iLT.

number of clicks and see which metric can better explain
user’s behaviour and experience.

Ultimately, we validate the generalisability of iLT and
TCiL by looking at two different web mapping contents.

V. EXPERIMENTAL DESIGN AND PROCESS
To support further studies, the experimental platform and the
data from this study have been shared.1

This subjective study has been designed in accordance
with the general perceived performance estimation process
defined in ITU-T Recommendation G.1030 [35] and ETSI
(2010) Human Factors (HF); Quality of experience (QoE)
requirements for real-time communication services [36].

A. STUDY PROCESS
Twenty eight individuals participated in this experiment.
A pre-test questionnaire (Table 3) and 18 cases (9 using map
tiles and 9 using satellite imagery tiles) were completed by
each participant. Written instructions were provided for the
predefined tasks (Section V-F). For each task, an expected
iLT value is randomly selected and set from a group of
nine waiting time values, by manipulating the network delay
(Section V-B). The user experiences a series of iLTs for
each task and, rates the perceived Web QoE for the task
on 5-point ACR scale. Throughout the experiment, the main
structure of the home page stays static, and only the map tile
objects loaded. The participants were all members of the same
educational institution and had similar prior experience using
webmapping applications. This was considered an advantage
in terms of the cohort homogeneity but it is acknowledged
that it may also introduce other biases.

In the following subsections, we describe details of the
experimental design parameters.

B. METRICS AND MEASUREMENTS
Table 2 presents the metrics captured in the user experiment.
The web mapping application is instrumented to capture iLT,

1https://github.com/hzjahromi/iweb

VOLUME 8, 2020 47747



H. Z. Jahromi et al.: Beyond First Impressions: Estimating QoE for Interactive Web Applications

TABLE 2. Objective and subjective metrics collected in the experiment.
The metrics are collected at client side by instrumenting the web mapping
application using JavaScript.

TABLE 3. Users characteristics questionnaire. The questionnaire is
prepared using HTML form and filled by the participants prior to the
subjective experiment.

TCiL and Number of Clicks. Upon the completion of each
iteration, a page is presented with a 5-point ACR scale to the
user to record the perceived quality of experience rating.

For each task the network delay was set to target iLT values
close to those illustrated in Table 4, referred to as test cases.
The choice of iLT values for the test cases are based on find-
ings from previous web mapping and usability engineering
studies [37], [38]. Based on the ITU-T recommendations,
the sequence of test case evaluation is randomised for each
user to minimise the interference between subsequent test
cases and balance out the bias of memory effect [27], [39].
We have also considered stimulus spacing and frequency
biases while selecting these values [40]. We expect that
the selected values would result in an approximately nor-
mal distribution of judgments. The iLTs are achieved by
imposing different network-level delays in the transport path,

TABLE 4. Targeted Values for different test conditions, we set network
delay for each test case, executed the subjective task and collected the
metric values. In this case the value of TCiL is fixed at ten in order to
accurately measure each iLT. These values help us to compare the user’s
interactions/behaviours with these base values.

as described in [41]. The iLTs can approximately vary by 5%
from the values shown in Table 4.

C. PLATFORM
We utilized a platform previously presented in [41] and added
a feature to collect user quality ratings via a 5-point ACR
scale. The platform has two components: a client machine
and an application server. The application server hosts two
services: a Web Mapping Application and a Controller. The
controller manipulates the round trip network delay, captures
the instrumented metrics and user ratings and stores them
in a CSV formatted log file. The web mapping application
provides a map of the world that contains a tiled map and
collects the subjective quality rating. The main HTML page
of the application is instrumented using a combined AJAX
and JavaScript function to measure iLT, TCiL and Number
of Clicks at the client side and passes the information to
the controller. The controller stores the data and sets a new
network delay for the next iteration.

We can adjust the iLT by instrumenting application or by
changing network conditions such as increasing the network
delay. Instrumentation of the application omits the com-
mon loading artefacts caused by the communication factors.
Therefore, we used network delay to increase the iLT and
keep the realistic map loading experience through progressive
loading of tile images. Using network delay to vary the iLT
allows us to investigate the realistic experience of the end user
and be able to objectively reproduce a similar experience.

D. USERS AND CONTEXT
Participants were randomly recruited across different schools
within a university context. We chose a scenario where
end-users of the web mapping application explore a standard
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mapping features in a non-emergency situation task that
requires the user to find a location by searching, zooming and
panning [42].

The user’s skill-set (e.g. familiarity with the UI and func-
tions) and user’s objectives (e.g. pinpointing a place or navi-
gating from one location to another) are understood to impact
the user’s experience [43]. Table 3 summaries the pre-test
questionnaire undertaken to capture the cohort’s previous
experience with web applications as well as demographic
information. Time perception between humans is more uni-
versal than familiarity with web mapping tools. Having
a homogeneous cohort reduced the variation due to user
experience.

We defined a single task with the same objective for all
participants. Participants completed a paper-based pre-test
training of the task steps to familiarise themselves with the
procedures and the graphical user interface. This paper-based
version with screenshots of the task was used in training in
order to avoid biasing waiting time expectations.

E. WEB MAPPING CONTENT
To understand the effect of content on the perceived quality,
we used two web mapping content types for testing: Map
and Satellite Imagery. Satellite imagery map tiles have higher
complexity and image density resulting in larger file sizes in
comparison to map tile images.

F. TASK
A single taskwas defined to ensure all participants experience
a similar level of interactivity. The goal is to search for a
given location in a university campus and navigate the path to
the nearby transport hub using common features of the web
mapping services [42], [44]. To accomplish this, we designed
a task with the following steps:
1) Search: Utilize the search box and look-up for univer-

sity campus.
2) Zoom In: Once the university landmark is visible,

zoom in three times to see the buildings and the street
names.

3) Navigate: Pan to the left and find the main Road.
Follow themain road to the north east until the transport
hub is shown.

4) Zoom Out: Zoom out for three times to see both uni-
versity and the transport hub.

G. USER SATISFACTION
For each iteration, the user rates the perceived quality upon
the completion of the task using the 5-point ACR scale (as
shown in Figure 7). For instance, for a test case, if perfor-
mance quality from the web mapping application was as
expected, it would be rated as excellent.

H. PHYSICAL ENVIRONMENT
To minimise the environmental error and increase the atten-
tion of the participants during the test, the participants com-
pleted the test in a controlled laboratory environment. The test

FIGURE 7. This graph illustrates an example of the experimental flow and
the user’s actions. The x-axis shows the task timeline and the y-axis
represents the number of XHR events caused by the user’s interactions.
The dotted blue line shows the time that an action is taken and the
horizontal blue bars represent the network traffic as a result of user’s
interactions. At the end of iteration, the user feedback the perceived
quality.

was carried in a quiet lab room within a normal office setup
where participants were asked to sit facing a 23’’ PC monitor
(Dell 2313H, 1920 × 1080 px) with a viewing distance of
approximately 60 cm.

I. THE TEST USERS DEMOGRAPHICS AND EXPERIENCE
The information fields collected in the pre-test questionnaire
completed by participants is summarised in Table 3. We val-
idated our assumptions with respect to the homogeneity of
the test cohort’s technical experience and expertise with
web mapping applications. The experiment was completed
by 28 participants, 78% were male, and 22% were female,
the age of participants ranges from 21 to 50 years old, with an
average age of 33 years old. 18% and 72% of participants had
Middle and Very Good level of skills with the utilization of
computers, respectively. Regarding the familiarity with web
maps, 89% of participants use web maps on weekly or daily
basis, and 11% use web maps occasionally. The participants
engaged in this study had graduate degrees. All participants
had a normal or corrected vision.

J. COLLECTED DATA
We collected 479 data records, each containing the objective
and subjective measures (Table 1). We excluded incomplete
records that did not have a corresponding subjective rating
and records where the iLT was not measured at least once
for that particular iteration. This can occur for a variety of
reasons as the iLTmay not be measured if the participant does
not wait for the content to be fully loaded while following the
steps. For example, initially, the user zooms in but then starts
panning before all the tiles have loaded. This prevents us from
measuring the iLT for the zoom in action and if it occurs for all
actions, the mean iLT value of the iteration will be zero. If we
include a record with mean iLT =0 ms in the data-set, it will
reduce the accuracy and validity of our correlation analysis
between iLT and the perceived quality.
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K. INTRA-RATER AND INTER-RATER RELIABILITY
To quantify the reliability of our subjects (raters), we have
considered two different types of reliability of the user study:
intra-rater and inter-rater reliability. Intra-rater reliability
shows to what extent the ratings of an individual user are
consistent. inter-rater reliability measures to what extent the
participants agree when rating the same set of test cases.
We have computed intra-rater and inter-rater reliability for
map and satellite separately.

We have used the methodology explained in [45], and
utilised Spearman’s Rank Correlation Coefficient to quan-
tify intra-rater reliability. The correlation coefficient shows
whether the relationship between two variables (iLT and
ACR) can be explained with a monotone function. The rank-
ing is expected to change proportionally with the value of the
iLT, resulting in a different score for each test-case. If the
ranking has no repetition, the result of the correlation will
be one. The result of intra-rater reliability shows 0.68 and
0.78 for the map and satellite contents, respectively.

We have used the average measure Intra-class Correla-
tion Coefficient (ICC) to measure inter-rater reliability. ICC
shows the reliability of multiple raters averaged together.
A higher ICC value indicates better inter-rater reliability.
i.e. ICC of 1 illustrates a perfect agreement among the raters
and 0 means a random agreement. The result of ICC for the
map and satellite cases are 0.92 and 0.96, which falls under
the acceptable inter-rater reliability threshold [46].

VI. ESTABLISHING THE RELATIONSHIP BETWEEN
iLT AND PERCEIVED QUALITY
Each collected data record contains a series of iLTs and a
quality rating on a 5-point ACR scale. From the data we can
compute a Mean Opinion Score (MOS) and Mean iLT. MOS
is computed as:

MOSj =

∑N
i=1 mij
N

(6)

where mij refers to the score by subject i for test case j and N
is the number of the participants. Mean iLT is computed using
the arithmetic mean over all individual Mean iLT of each test
case (mean of means) based on:

iLTpq =

∑k
n=1 iLT
k

(7)

and

Mean iLT =

∑N
p=1 iLTpq
N

, (8)

where iLTpq refers to the mean of k number of iLTs experi-
enced by subject p for the test case q. Mean iLT is the mean
of iLTpq based on the number of participants, N , for a test
case q.

Figure 8 shows the relationship between mean iLT and the
perceived quality using a MOS scale. The figure plots two
sets of results for different content types: one for satellite
imagery and one for simple maps. There are nine data points
per experiment with 95% Confidence Interval (CI) error bars.

FIGURE 8. MOS Vs iLT with error bars indicating 95% CI. This
figure represents the logarithmic relationship between MOS and iLT for
both Map and Satellite imagery content. The a and b curve fitting
parameters of Equation 9 are [−0.41,6.48] and [−0.73,9.00] for the map
and satellite respectively. We have also computed the matching
parameters a and b with more indicative bases than natural logarithm.
The computed a and b parameters of Map content with base 2 and base
10 are [−0.28,6.48] and [−0.94,6.48] respectively. Similarly, For the
satellite content, [−0.50,9.00] and [−1.69,9.00] are the computed a and b
values with base 2 and base 10 respectively.

The fitting function, similar to WQL [24], is motivated
by Weber-Fechner law stating that the perceived intensity is
proportional to the logarithm of the stimulus [47].

As shown in Equation 9, we used a logarithmic fitting
function and plotted as bold lines in Figure 8. However, as we
did not ask the subjects to rate the QoE per action within the
test sequences, the proposed model does not consider short
term memory effects.

QoEiLT
= a · ln(t)+ b (9)

where a and b are coefficients derived using the following
least square fitting functions:

a =

∑n
i=1 yi − b

∑n
i=1(lnxi)

n
(10)

b =
n

∑n
i=1(yilnxi)−

∑n
i=1 yi

∑n
i=1 lnxi

n
∑n

i=1(lnxi)2 − (
∑n

i=1(lnxi))2
(11)

where t refers to the mean iLT.
From the results presented in Figure 8, we can see that

a logarithmic fitting of QoEiLT can be used for both satel-
lite imagery and simple map content. This logarithmic rela-
tionship corresponds with a well-known WQL hypothesis
which shows iLT holds the expected relationship with
QoE [24], [48].

We have used the coefficient of determination (known as
‘‘R-squared’’) to assess how good the fitting curve explains
and predicts future outcomes. The computed R-squared for
the map and satellite contents are 0.92 and 0.94, respectively.
i.e. the R-squared of 0.92 for the map means that 92% of the
dependent variable (MOS) is predicted by the independent
variable (iLT).
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The deviation in the fitting curve, however, shows that
change in content type impacts the perception of waiting time
and overall quality. The high-quality satellite imagery content
impacts the users’ quality perception for higher MOS levels
(MOS > 3). Additionally, we can see that while the iLT
associated with both satellite and map content were similar,
the participants’ QoE ratings followed a higher average trend
for the satellite over simple map content. This shows that the
content impacts the user’s expectations and quality percep-
tion [10], [11]. We see that when the map and satellite iLTs
intersect at approximately three seconds, the map tiles yield
better quality scores. This again highlights the importance of
content as a Web QoE factor. In Section VII, we will further
explore the impact of user interactions on the shape of the iLT
curves.

VII. COMPARING iLT TO STATE OF THE ART
NON-INTERACTIVE METRIC
In this section, we compare iLT, our proposed interactiveWeb
QoEmeasure, with the non-interactiveWebQoEmetric, Page
Load Time (PLT). This will allow us to compare how user
interactions occurring after an initial interaction can impact
Web QoE.

FIGURE 9. Comparison between iLT for web mapping application vs
State-of-the-Art applications PLT/Waiting Time. The applications can be
divided into two categories. The first category involves e-mail
transmission with attached files and content downloads. The second
category involves the time required to display the home page when
accessing a web site (PLT), the time required to connect a voice call, and
the time required to transmit a plain-text e-mail [48].

Figure 9 presents user waiting time (seconds) plotted
against perceived quality (MOS) for a variety of web applica-
tions. This data was collected in several experiments and used
to explore the relationship between users’ QoE and waiting
time for web page, voice, email and file-download web tasks.
The dashed lines show results previously presented in [48].
The solid lines show the map and satellite mean iLT results
from this work overlaid for comparison. The y-axis is the
perceived quality on the MOS scale ranging from 1 to 5, and
the x-axis represents the waiting time (Seconds).

FIGURE 10. User behaviour: the relationship between interactive load
time (mean iLT) and perceived quality (5 ACR levels) based on the number
of clicks (the colour corresponds to the number of occurrences). Plotted
by content: map tile (left) and satellite tiles (right).

Similar to the other web applications, we can see that the
map and satellite mean iLT has a logarithmic relationship
with the perceived quality. However, the different slopes
observed for the iLT curves compared to non-interactive
PLT curves point to the effect that subsequent user interac-
tions have on the perceived quality. When a user interacts
with a web application, it is expected that the interaction
follows a ‘‘smooth flow’’ experience. The in-place (partial)
update of an interactive web application can improve the
‘‘flow’’ experience. This could further explain the deviation
in the fitting curves between Mean iLT and non-interactive
application PLT.

VIII. USER BEHAVIOUR, WAITING TIME AND
PERCEIVED QUALITY
How does user behaviour change based on waiting time and
how is this related to perceived quality? We examine user
behaviour using two metrics, first, the Number of Clicks that
a user makes interacting with the web mapping application
and second, the Total Completed interactive load (TCiL).

Figure 10 presents two heat maps that show the relation-
ship between interactive load time (mean iLT) and perceived
quality (5 ACR levels) from the experiments using map and
satellite tiles respectively. The colour ranges from white to
dark blue, indicating an increase in user activity, based on the
number of clicks.

The top left quadrant is fast/high quality, and the bottom
right is slow/low quality. The number of clicks varies across
the range and we did not observe any trends in this data
that provides insights into a relationship between waiting
time, perceived quality and a change in the behaviour of the
user in terms of their interaction as measured by number of
clicks.

Similarly, Figure 11 presents two heat maps that show the
relationship between interactive load time (mean iLT) and
perceived quality (5 ACR levels) from the experiments using
map and satellite tiles respectively. In Figure 11 the colour
ranges from white to dark blue, indicate an increase in the
number of completed interactions by the user, by counting
the number of completed interactive load (TCiLs) recorded.
If a user clicks to initiate a new request to the application
before the page load has competed for the previous interaction
a TCiL is not recorded.
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FIGURE 11. User behaviour: the relationship between interactive load
time (mean iLT) and perceived quality (5 ACR levels) based on the number
of completed interactions, TCiLs. The colour corresponds to the number of
interactions completed. Plotted by content: map tile (left) and satellite
tiles (right).

The top left quadrant is fast/high quality, and the bottom
right is slow/low quality. Looking at the satellite results
(right hand plot), the trend shows that as quality increase and
waiting time decrease, the number of completed interactions
increases.

The first column from the left of the TCiL for Sat subplot
shows that, for iLT < 0.5 seconds, the number of completed
loads varies from eight to 14 times. For the iLTs between
0.5 and two seconds, the number of completed loads trends
higher that for iLT > 2 seconds. We postulate that users
exhibit patience and are willing to wait for the result of each
interaction for iLTs < 2 seconds. This finding for the web
interactions is consistent with the two seconds rule observed
in [49] for the text entry and editing tasks on computer
terminals.

Taken in the context of the QoE factors introduced
in Figure 1, user experiences will have pre-established expec-
tations regarding the time required to complete an interaction.
If the iLT associated with an interaction faster than expected,
the user will be satisfied with the quality. If the iLT is per-
ceived as slower than expected, the QoE will be lower and
they may start loosing attention and focus on the task as they
become consciously aware of their dissatisfaction. According
to [49], users are satisfied with response times of less than
a second for most tasks, however, a two seconds response
time is generally acceptable and does not significantly impact
the user’s attention [38], [49].

Although the TCiL provides insight into tolerance thresh-
olds for waiting time, it is apparent from Figure 11 that TCiL
and perceived quality are not highly correlated. If they were,
we would expect to see a smooth colour transition from a dark
to light. The variation in TCiL highlights the challenge of
measuring iLTs when the iLT goes beyond the user’s toler-
ance thresholds. If the user loses patience and issues a new
request, the load is incomplete and a new interaction begins.
As a result, objective measurement of iLT is challenging as
the instrumentedmetrics do not capture thewhole experience.

IX. iLT AND USER INTERACTIONS
In the previous sections, we explored how the service (net-
work), human (action) and content (sat/map) factors impact
QoE (Figure 1). In this experiment, by normalising the

FIGURE 12. Illustration of difference in iLTs (1iLT) for different actions
while excluding the effect of network delay. 1iLT is normalised between
−1 and 1 by considering relative to the first load time (iLT Load) as zero.

network delay to zero and looking at the change in iLT per
action, we will observe the differences in iLT for different
user’s actions.Wewill also demonstrate that iLT varies for the
different content type. Thus, this highlights that the network
delay is not the only influencing factor, and depending on the
type of interactions and the content, the QoE will vary.

This experiment illustrates the value of capturing iLT per
user’s action rather than as a single session waiting time.
This study is performed with seven participants (i.e. N = 7)
invited from the same cohort (see Section V-I). For illustra-
tive purposes, this cohort size was sufficient to illustrate the
trends with statistical significance. The experiment focuses
on differences in measured iLT and its relationship with the
current action rather than perceived quality. We used the
same methodology and process explained in Section V and
instructed the users to:
• Execute the subjective task for 18 iterations (Table 4).
• Follow the task steps and wait for the result of each
action before taking the next action This helps us to
measure iLT accurately as it ensures that all interactions
are completed.

• No quality rating is required at the end of each iteration.
We collected 1008 data records. Each record contains

an iLT corresponding to a user’s action. As explained in
Section V, a mean iLT value is targeted for each test case.
To better understand the difference in iLTs associated with
actions, we have excluded the network effect for different test
cases. The network effect was excluded by considering the
first iLT (initial Load) as point zero. We then computed the
difference between initial Load mean iLT and other actions
mean iLT and normalised the values between −1 and 1.
We will refer to this as 1iLT. Figure 12 presents 1iLT for
sequential user actions. Results for both map and satellite
content are plotted. The error bars are 95% CI of1iLT based
on the user actions. If the 1iLT of a user action is zero then
the interaction load time corresponded with the initial load
time. If the 1iLT is negative, the content loaded faster than
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TABLE 5. Mixed-model ANOVA results for fixed (F-Test) and random
effects (Likelihood-Ratio Test). target variable: 1iLT. Asterisks indicate
levels of statistical significance. The F is the ratio of the mean-square
value and χ2 refers to the chi-square test.

the initial Load while a positive1iLT means the content took
longer to load than the initial load.

From our Mixed Model ANOVA analysis (Table 5) and
Fig. 12 we can observe:
• If the network transportation delay was the only influ-
encing factor, then the1iLT of all actions would be close
to zero.

• The 1iLT for the Search action is close to zero,
i.e. it is similar to the Load action. The user has minimal
interaction while taking the search action (just a click).
For the Zoom and Pan actions, the user interaction with
the application is high resulting in significantly variation
in 1iLT for these actions. Furthermore, the influence
of users’ actions on 1iLT is statistically significant
(Action, p < 0.001) which exerts that the iLT changes
depending on the users’ action.

• 1iLT of map content differs from satellite content. This
difference shows that the content is a factor influencing
user interactivity (Action:Content, p < 0.001).

• Negative 1iLT scores highlight that many actions com-
peted faster than the initial load due to the fact that
requests could rely on AJAX and caching to at least
partially deal with the requests locally without needing
a full data refresh from the server.

X. LIMITATIONS
In these experiments, users rated session QoE for a series
of iLTs. The influence of memory effects (recency or pri-
macy) on the perceived quality was not explored, i.e. are
some iLT in the series more important to the rated QoE?
The current study is a task-driven QoE study where the
type of task and content could be salient factors influencing
Web QoE. Our choice of a client-side metrics have been
shown to be effective in measuring the user experienced
waiting time for a session, but it is challenging to imple-
ment and measure them as a monitoring tool ‘‘in the wild’’.
Lastly, we have used a web mapping application as a use

case and representative of an interactive application that
requires a smooth flow experience to develop the metrics and
model. However, further evaluation of interactive web QoE
is required to explore how the result and derived fitting curve
generalise to a range of other web applications, contents and
contexts.

XI. CONCLUSION
In this paper, we reviewed the existing models and metrics
used for web QoE estimation, i.e. time instant and time
integral metrics. Existing metrics are based on the first page
load occurrence. We discussed why these current metrics are
not sufficient to measure perceived quality for interactive web
applications. We explained that the user keeps interacting
with the application after the first page load, rendering PLT
inadequate for interactive web applications. We introduced
iLT and TCiL which capture waiting time associated with the
user interaction. The iLT and TCiL metrics are computation-
ally simple and both metrics can be continuously measured
beyond PLT and ATF completion times. Using a subjective
experimental study, we demonstrated that iLT has the same
logarithmic relationship with user satisfaction as PLT. It also
aligns with the well knownWQL hypothesis. This confirmed
that iLT is effective for Web QoE estimation. We showed that
the slope of the fitting curve for mean iLTs/MOS deviates
from the PLT/MOS and speculate that this is as a result of
multiple factors including user interaction and the content
type.

An investigation using total completed interactive
load (TCiL) established that web users do not necessarily
wait for a complete result of an interaction before taking the
next action. This finding shows that measuring iLT can be
complicated when a user interrupts a request as a result of the
user’s waiting time tolerance threshold. Further investigation
of how to account for interrupted loads in low QoE scenarios
could enhance the value of iLT as a metric. We believe
that to have an effective Web QoE estimation metric for an
interactive web application, the time integral metrics need to
be re-designed and be able to capture the user’s interactions
beyond ATF and PLT. i.e. ByteIndex can be bounded to the
time iLT start and endpoints.
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