
A Single-Shot Approach Using an LSTM for
Moving Object Path Prediction

Jaime B. Fernandez
Insight Centre for Data Analytics

Dublin City University
Dublin, Ireland

jaime.fernandezroblero5@mail.dcu.ie

Suzanne Little
Insight Centre for Data Analytics

Dublin City University
Dublin, Ireland

suzanne.little@dcu.ie

Noel E. O’Connor
Insight Centre for Data Analytics

Dublin City University
Dublin, Ireland

noel.oconnor@dcu.ie

Abstract—This work presents an analysis of predicting the
future path of moving objects from a moving camera on traffic
scenes with an LSTM architecture in a single-shot manner. Path
prediction allows us to estimate the future locations of an object
in a given space and is useful in important applications such
as surveillance, abnormal behaviour detection, crowd behaviour
analysis, traffic control and currently in driver assistance (ADAS)
or collision avoidance systems. Normal approaches use the
last tobs positions of an object observed in video frames to
predict its future path as a sequence of position values. This
can then be treated as a time series. LSTM architectures are
known for reaching good performance when dealing with time
series. We evaluate path prediction across three types of objects
(pedestrians, vehicles and cyclists), four prediction horizons (5,
10, 15 and 20 frames ahead) and two different perspectives (image
coordinate and birds-eye view). The approach described in this
work reached an Average Displacement Error (ADE) of 0.01m
for pedestrians, 0.06m for vehicles and 0.02m for cyclists and
an average Final Displacement Error (FDE) of between 0.016m
and 0.15m for near-future prediction using an LSTM architecure
with relative tracklet positioning.

Index Terms—path prediction, traffic scenes, LSTM, time
series.

I. INTRODUCTION

Autonomous navigation requires accurate and detailed mod-

els of the static and dynamic environment being explored.

Specifically, environments with moving objects, for instance

pedestrians and cars, pose significant challenges for naviga-

tion [1], [2]. Vehicle and pedestrian detection [3]–[5], have had

notable progress over the years, and are increasingly reliable.

Detection of moving objects is useful to be aware of the

surroundings of a vehicle since this information cannot be

captured by a static road map. Knowing where an object is

currently located is already useful, but predicting its location

in the future is of great importance for autonomous vehicles

for safe and efficient driving and risk analysis. This can also

be useful for application in assistive technologies such as

navigation for blind people to avoid collision.

Among motion prediction research one specific task is path

prediction, where the past trajectory of objects is used to

predict their future positions. Several approaches have been

developed [6]–[8]. Recently LSTM architectures have been

applied to this challenge due to their capability of getting

information from sequences and then predicting using that

previous information.

The main focus of this work is to show the performance of

an LSTM on the scenarios that constitute the KITTI dataset, to

predict the future position of objects that are present normally

in traffic scenarios, such as pedestrians, vehicles and cyclists,

for different time horizons. We also apply the prediction on

two perspectives: image coordinate (pixels) and birds-eye view

(metres). Image coordinate because is the most common data

found in a dataset and birds-eye view since it is a more

realistic measurement of the real word. For the remainder of

this paper, Section II presents relevant related works in this

field, putting an emphasis on works using LSTM architectures;

Section III presents our approach; Section IV and V present the

experimental setup and results respectively. Finally in Section

VI conclusions are given.

II. RELATED WORKS

A. Path Prediction

The simplest approach that is widely used is the famous

Kalman filter (KF) [9] along with kinematic models and

several variants such as the Extended Kalman Filter (EKF)

and the Unscented Kalman Filter (UKF) [10]. Schneider and

Gavrila [6] present a comparative study of the Kalman filter

with some kinematic models in a vehicle context. They studied

several single kinematic models such as Constant Velocity,

Constant Acceleration, and Constant Turn Rate and Interacting

Multiple Models and the results show no significant perfor-

mance gain for the more sophisticated multiple models versus

the simpler constant velocity for current position estimation.

They attribute that to the high sampling rate and the low

measurement error. Another example of using the KF is found

in [8] where they use the Extended KF to perform short term

prediction. Other interesting work is shown in [11], in this

research four different methods were evaluated for predict-

ing future pedestrian positions accurately: Gaussian process

dynamical models (GPDMs) and probabilistic hierarchical tra-

jectory matching (PHTM) that use augmented features derived

from dense optical flow and KF, and Interacting Multiple

Models that use positional information only. In this work, they978-1-7281-3975-3/19/$31.00 ©2019 IEEE

conclude that similar path prediction performance was reached

for the four approaches.

Other approaches perform path prediction based on

prototype trajectories. In [12] they use the Expectation-

Maximization algorithm to cluster all the trajectories from

a specific scenario and then using these clusters predict the

motion for a partially observed trajectory. Their weakness lies

in their inability to predict atypical trajectories and also that

they are designed for specific scenarios. Similar work is found

in [13], [14] and a highly interesting survey about trajectory

clustering can be found in [15]. Other interesting approaches

are those based on manoeuvre intention estimation. In [8],

[11] for example, they classify the action of the objects and

predict based on that classifying two actions of the vehicle:

speed profile and changing of lane. For each vehicle on the

road, they compute all possible sequences of action, regarding

the current velocity and location. They assign a cost for each

action and unrealistic action sequences are eliminated.

B. Long Short-Term Memory (LSTM)

LSTM architectures (see Fig. 1) are currently used in

areas such as translation, time series prediction and trajectory

prediction. LSTMs are capable of getting information from

sequences and then predicting using that previous information.

One interesting work is shown in [16], where they address

the problem of predicting the trajectory of pedestrians in

crowded spaces using static cameras. This approach, called

Social LSTM, uses one LSTM for each of the pedestrians in

the scene. Social refers to the use of the trajectory of other

pedestrians that is taken into account to predict the trajectory

of a single one. They use a separate LSTM for each trajectory

and then connect each LSTM to other through a Social pooling

layer, this pooling layer allows spatially proximal LSTMs to

share information. The hidden-states of all LSTMs within a

certain radius are pooled together and used as an input at the

next time-step. Similar work is presented in [17] where they

use LSTMs to predict the trajectory of vehicles in highways

from a fixed top view perspective.

In [18] multiple cameras were used to predict the trajectory

of people in crowded scenes and [19] predict the trajectory

of vehicles in an occupancy grid from the perspective an ego-

vehicle. A more related work to this paper is presented in

[20], here they predict the future path of pedestrians using

RNNs as encoder-decoders and also include the prediction of

the odometry of the ego-vehicle.

In this work, different to [18], path prediction is performed

using cameras mounted on a moving vehicle. Instead of using

one LSTM per object like in [16], we use an LSTM for

all objects. Also the prediction of the future path is made

by a vanilla LSTM in a single-shot manner instead of using

encoder-decoders or recursive multi-step forecasting. Finally,

we evaluate on three different objects available in KITTI

data set, on two different metrics and also report the results

from both the image perspective and a birds-eye view using

available 3D information.

Fig. 1. LSTM Architecture [17]

III. APPROACH

A path P is a set of tracks, tr, than contains information
such as tr(x, y) position (coordinates) of an object that travels
a given space, P = {trt1, trt2,trtlength}. Each tr is a
measure given for a sensor in intervals of time and in an

ordered manner, tr(x, y, time). This means that a path is
a sequence of measurements of the same variable collected

over time, where the order matters, resulting in a time series.

Because of this, a path can be seen as a multivariate time series

that has two time-dependent variables. Each variable depends

on its past values and this dependency is used for forecasting

future values. So the task of path prediction can be seen as

multivariate multi-step time series forecasting. LSTMs have

shown good performance when dealing with time series and

so in this approach an LSTM architecture is used for path

prediction. LSTMs can be used in different manners, two of

these are Recursive Multi-step Forecast and Multiple Output

Strategy.

Recursive Multi-step Forecast uses a one-step model time
by time, where the prediction from the prior time step is used

as an input for making a prediction on the following time

step. Specifically for path prediction, this can be seen as a

path generation task. This approach can be used as follows:

1) Input = [trt1, trt2, ..., trtobs]
2) ptrt1 = model.predict(Input)
3) Input = [trt2, ..., trtobs, ptrt1]
4) ptrt2 = model.predict(Input)
5) Input = [..., trtobs, ptrt1, ptrt2]
6) ptrt3 = model.predict(Input)

This process is repeated tpred times, where tpred is the
number of tracks or steps to predict ahead.

Multiple Output Strategy develops one model to predict
an entire sequence in a one-shot manner. Like other types of

neural network models, the LSTM can output a vector directly

that can be interpreted as a multi-step forecast. This approach

can be used in the following way:

1) Input = [trt1, trt2, ..., trtobs]
2) Output = model.predict(Input)
3) Output = [ptrt1, ptrt2, .., ptrtpred]

In this work, the multiple output strategy was adopted. To

use an LSTM in this manner the input and ground truth (GT)

output data were configured as:

Input data = [NSamples, tobs, Features]
GT output data = [NSamples, PSize]

where NSamples is the number of samples that consti-
tute the training data. tobs is the size of tracklets used for
predicting, i.e., 5 tracks to predict 5 steps ahead. Features
is the number of variables that constitute each track. In this

case was two features, the position: (x, y), and PSize is the
number outputs in the prediction. As the last dense layer can

only be a one dimensional array, this can be calculated as

tpred ∗ Features in the GT output data.

IV. EXPERIMENTS SETUP

A. Datasets

For this work, KITTI data set was selected as it provides the

tracks of the objects as both image coordinates and in 3D. The

other benefit is the realistic scenarios with a variety of objects

such as in the city, highways, crossing road, vehicle standing,

moving. KITTI is one of the most popular datasets for use

in mobile robotics and autonomous driving. It consists of

traffic scenarios recorded with a variety of sensor modalities,

including high resolution RGB, grayscale stereo cameras, and

a 3D laser scanner. Most recently it provides 200 training

images as well as 200 test images for semantic segmentation.

It also provides 21 sequences with the tracking labels of

the objects in image coordinates and 3D information [5], as

visualised in Fig. 2.

Fig. 2. Image coordinate (top) and birds-eye view (bottom) perspective with
the class label and object identifier.

B. Image coordinate and 3D information

Image coordinate is the position of the objects in the 2D

plane of an image. These are given in pixels as (x, y) points.

KITTI gives the bounding boxes of the objects in this plane

as (x1, y1, x2, y2).
3D information refers to the position of the objects in

the real world plane with respect to the camera. KITTI

provides this information as the position in x, y, z along with
the dimensions of each object height, width and length –

(x, y, z, h, w, l). In this work, this information was leveraged
to create a birds-eye view of the objects. Fig. 2 depicts the

objects of a selected frame in both image coordinate and

birds-eye view with the object class label number and object

identifier number.

C. Evaluation metrics

The following metrics were used to evaluate the accuracy

of the trajectory prediction [16]:

• Average Displacement Error (ADE): is the mean square
error (MSE) between all estimated points of every trajec-

tory and the true points:

ADE =
∑n

i=1

∑tpred
t=1 [(x̂t

i−xt
i)

2+(ŷt
i−yt

i)
2]

n(tpred) (1)

• Final Displacement Error (FDE): is the distance be-
tween the predicted final destination and the true final

destination at the tpred time:

FDE =
∑n

i=1[(x̂
tpred
i −xtpred

i)2+(ŷtpred
i −ytpred

i)2]
n (2)

where (x̂t
i, ŷ

t
i) are the predicted positions of the tracklet i

at time t, (xt
i, y

t
i) are the actual position (ground truth) of the

tracklet i at time t, and n is the number of tracklets in the
testing set.

D. Data Pre-processing

A crucial phase of dealing with time series prediction is

understanding and preparing the data. The data was pre-

processed as follows:

1) Parse the KITTI data set to a simpler format with each

track described by seven features: [Frame Number, Object

Type, ID, XMin, YMin, XMax, YMax].

2) Extract trajectories of each object per sequence. KITTI

contains several type of objects such as pedestrians and

vehicles. This step is necessary to not mix tracks of other

objects.

3) Create tracklets (sub-trajectories) of a certain consistent

length. For each object trajectory, tracklets of size 10, 20,

30 and 40 tracks were extracted, these tracklets constitute

the data set used for training and testing.

4) The center of the bounding boxes for the objects were

extracted.

5) Translating the tracklets to relative position. This process

consists of setting the first (x, y) position of each tracklet
to (0, 0) and all the following tracks are adjusted relative
to this point. Tracklets that have been adjusted will

be referred to as Relative Tracklet Position (RTP) and

the original, un-adjusted tracklets, as Absolute Tracklet

TABLE I
PATH PREDICTION ACCURACY USING IMAGE COORDINATES

Image Coordinate (Pixels)

Approach LSTM Absolute Tracklet
Position

LSTM Relative Tracklet
Position Kalman Filter

Metric ADE ADE ADE
P.H. Pedestrian Vehicle Cyclist Pedestrian Vehicle Cyclist Pedestrian Vehicle Cyclist
±5 100.01 118.96 136.96 75.79 98.45 94.07 111.08 225.01 143.46
±10 375.05 296.85 3,242.19 244.10 353.39 160.12 259.51 584.91 287.28
±15 935.63 734.28 38,15.82 802.44 667.86 1163.30 549.08 1,019.41 807.20
±20 1,305.00 1,127.07 35,085.46 1,755.36 1,065.49 6,856.42 969.81 1,553.51 1,943.66
Metric FDE FDE FDE
P.H. Pedestrian Vehicle Cyclist Pedestrian Vehicle Cyclist Pedestrian Vehicle Cyclist
±5 217.43 288.87 396.68 168.79 252.39 270.98 213.82 500.72 385.15
±10 987.91 947.26 7,189.01 727.37 1,162.55 537.67 777.56 1,913.92 1,021.67
±15 2,858.74 2,506.66 8,602.20 2,483.38 2,411.63 4,452.41 1,907.46 3,695.07 3,407.79
±20 4,219.29 4,114.17 15,7686.48 6,250.89 4,039.87 25,743.37 3,566.63 5,808.09 8,539.29

TABLE II
PATH PREDICTION ACCURACY USING BIRDS-EYE VIEW (REAL WORLD MEASURES)

Birds-Eye View (metres)

Approach LSTM Absolute Tracklet
Position

LSTM Relative Tracklet
Position The Kalman Filter

Metric ADE ADE ADE
P.H. Pedestrian Vehicle Cyclist Pedestrian Vehicle Cyclist Pedestrian Vehicle Cyclist
±5 0.026 0.085 0.124 0.007 0.065 0.023 0.062 0.465 0.236
±10 0.048 0.332 0.484 0.051 0.248 0.105 0.104 0.752 0.356
±15 0.120 1.184 1.021 0.121 0.872 0.413 0.213 1.122 0.544
±20 0.240 2.027 4.580 0.219 1.679 1.011 0.412 1.791 0.904

FDE FDE FDE
P. H. Pedestrian Vehicle Cyclist Pedestrian Vehicle Cyclist Pedestrian Vehicle Cyclist
±5 0.052 0.179 0.254 0.016 0.153 0.043 0.075 0.575 0.272
±10 0.131 0.953 1.271 0.145 0.721 0.271 0.246 1.666 0.637
±15 0.385 3.290 2.745 0.378 2.685 1.289 0.688 3.285 1.416
±20 0.732 6.660 11.219 0.767 5.479 3.062 1.490 6.036 2.953

TABLE III
IMPROVEMENTS USING IMAGE COORDINATES

Image Coordinate (Pixels) Improvement %
LSTM ATP

vs
LSTM RTP

The Kalman Filter
vs

LSTM RTP
Metric ADE ADE
P.H. Pedestrian Vehicle Cyclist Pedestrian Vehicle Cyclist
±5 -24.22 -17.24 -31.32 -31.77 -56.25 -34.43
±10 -34.92 19.05 -95.06 -5.94 -39.58 -44.27
±15 -14.23 -9.05 -69.51 46.14 -34.49 44.11
±20 34.51 -5.46 -80.46 81.00 -31.41 252.76
Metric FDE FDE
P.H. Pedestrian Vehicle Cyclist Pedestrian Vehicle Cyclist
±5 -22.37 -12.63 -31.69 -21.06 -49.60 -29.64
±10 -26.37 22.73 -92.52 -6.46 -39.26 -47.37
±15 -13.13 -3.79 -48.24 30.19 -34.73 30.65
±20 48.15 -1.81 -83.67 75.26 -30.44 201.47

Position (ATP). Experiments were done for both type of

tracklets.

A total of 853 objects were extracted from all the sequences

– 167 pedestrians, 649 vehicles and 37 cyclists – for the four

prediction horizons of 5, 10, 15 and 20 frames. The number

of tracklets are shown in Table IV for each object on the four

prediction horizons (P.H.).

TABLE IV
SIZE OF THE TRAINING DATA FOR ALL FOUR PREDICTION HORIZONS.

Number of Tracklets
P.H. Pedestrian Vehicle Cyclist All
±5 6,933 18,662 1,282 28,138
±10 5,933 14,591 1,028 22,907
±15 5,076 11,365 831 18,714
±20 4,371 9,172 665 15,658

E. Model

The Keras API 1 was used to obtain the implementation of

the LSTM architecture . To select the parameters a grid search

was executed over the whole dataset, including all objects,

and the following configuration achieved the best result. One

layer was selected since adding more layers does not improve

performance, as shown in [17], where they also mention that

1https://keras.io/

due to their recurrent nature, even a single layer of LSTM

nodes can be considered as a deep neural network:

• Number of layers: 1.
• Number of neurons: 128.
• Loss: MSE
• Optimizer: Adam.

V. RESULTS

This set of experiments evaluates the performance of a

Kalman filter with Constant Velocity model with an LSTM

network on the KITTI dataset. For LSTM’s results, two sets

of experiments were executed. One where the tracklets keep

their absolute position (ATP) and other where the tracklets are

translated to a relative position (RTP). For the Kalman filter

the same two set of experiments was made but the comparison

is not shown since the results using ATP vs RTP showed no

difference. The performance was calculated on four different

prediction horizons (P.H.) and for three different objects –

pedestrians, cyclists and vehicles (labelled as Cars, Vans and

Trucks). The data for training and testing consists of the

center of the object. The results are also provided in image

coordinate (pixels) and in birds-eye view (metres). Due to the

size of the image (1224 x 370 pixels), the results show large

values in the case of image coordinates. Fig. 3 illustrates the

approximate real world implication of variations in pixels as

applied to the KITTI dataset. Finally, the relative improvement

(error reduction) values shown in Table III and V were cal-

culated by [(newV alue− originalV alue)/originalV alue] ∗
100 where newV alue is the LSTM RTP methodology and

originalV alue is the approach to be compared with. The
negative values means that there was an error reduction using

the LSTM RTP approach.

A. LSTM ATP vs LSTM RTP

Table I, in the columns two and three, shows the results on

image coordinates obtained when executing the LSTM using

the two different type of tracklets (ATP and RTP) and Table III

depicts the relative improvements.

Table II, in the columns two and three, shows the results

on the birds-eye view obtained when executing the LSTM

using the two different type of tracklets (ATP and RTP), whilst

Table V presents the improvement.

This set of results show clearly that there was error reduc-

tion in most of cases when translating the tracklets to relative

position (RTP). In a few cases, mostly pedestrians, a slight

increase in error was found.

B. The Kalman Filter vs LSTM RTP

Table I, in columns three and four, shows the results on

image coordinates obtained by the Kalman Filter and LSTM

RTP and Table III depicts the improvement comparing both

approaches.

Table II, in the columns three and four, shows the results on

birds-eye view obtained when executing the Kalman Filter and

LSTM RTP, whilst table V presents the improvement of LSTM

RTP over the Kalman Filter. As in table III, the negative values

indicate that there was error reduction using LSTM RTP.

The results show that LSTM RTP outperforms the simple

Kalman Filter on most cases, specifically for vehicle and

pedestrians. Also, it can bee seen that LSTM RTP performs

better when predicting in birds-eye view compared to using

image coordinates.

TABLE V
IMPROVEMENTS IN BIRD-EYE VIEW.

Bird-Eye View (Meters) Improvement %
LSTM ATP

vs
LSTM RTP

The Kalman Filter
vs

LSTM RTP
Metric ADE ADE
P.H. Pedestrian Vehicle Cyclist Pedestrian Vehicle Cyclist
±5 -74.04 -24.05 -81.80 -89.19 -86.05 -90.40
±10 8.04 -25.19 -78.35 -50.76 -66.97 -70.52
±15 0.52 -26.35 -59.61 -43.07 -22.26 -24.10
±20 -8.74 -17.16 -77.92 -46.77 -6.26 11.78
Metric FDE FDE
P.H. Pedestrian Vehicle Cyclist Pedestrian Vehicle Cyclist
±5 -68.13 -14.30 -83.02 -78.14 -73.39 -84.16
±10 10.25 -24.35 -78.64 -41.30 -56.73 -57.41
±15 -1.86 -18.38 -53.05 -45.06 -18.24 -8.97
±20 4.82 -17.73 -72.71 -48.52 -9.22 3.71

C. Discussion

The results obtained in this work show that LSTM ap-

proaches perform well for predicting the near future paths

of objects in the context of cameras mounted on a moving

vehicles. It shows also that the performance of this approach

is affected by the prediction time horizon, the largest the

prediction horizon resulting in the largest errors.

For the LSTM architecture, it clearly can be seen that

translating the tracklets to a relative position (RTP) helps the

model to learn better to predict. The reason on this could

be that, RTP makes the tracklets to be similar in that space

and produces more examples for learning. Another important

point to note is that predicting in birds-eye view is better than

predicting using image coordinate, however 3D information is

not always available.

The results also indicate, that this approach is affected by

the size of the training data. For instance, for the class Vehicle,

LSTMs outperforms the Kalman Filter for all prediction

horizons. One probable reason is that for this object class there

is a bigger dataset to train, while for the other objects the size

of the training data is poor.

Finally, the processing inference time per tracklet for the

LSTMs approach was 0.02 tr/ms, 0.032 tr/ms, 0.045 tr/ms,

0.057 tr/ms for prediction time horizon (PH) of ±5 to ±20
respectively. The Kalman Filter processing time was 3.627

tr/ms, 6.961 tr/ms, 11.012 tr/ms, 13.553 tr/ms for PH of ±5 to
±20 respectively. All this using a computer with the following
features: GPU GeForce GTX 980, CPU Intel® CoreTM i5-

4690K CPU @ 3.50GHz x 4, RAM 24GB.

Fig. 3. Heat maps of 10-100 pixels (left to right) illustrating pixel differences
in the real world.

VI. CONCLUSION

This work presented a single-shot prediction approach that

uses one LSTM to predict the future position of objects

commonly present in traffic scenes. The selected data set was

KITTI because of its realistic scenes, such as highways, inter

city, vehicles standing, vehicle moving, its different objects

and the labelled data in image coordinate and 3D information.

The objective of this work was to compare the performance

of the commonly used Kalman Filter with the newer options

offered by LSTM architectures and analyze some of the

potential influences on their trajectory prediction accuracy by

looking at three object classes, four prediction horizons and

two different perspectives (image coordinate and birds-eye

view).

The results have shown that using an LSTM achieves good

performance of up to an ADE of 0.01m for pedestrians, 0.06m

for vehicles and 0.02m for cyclists and up to a FDE of 0.016m,

0.15m, 0.04m for the same objects improving the performance

of the baseline Kalman Filter. The results also show that the

performance is affected by the prediction horizon where the

longer the prediction horizon, the bigger the displacement

error. The prediction horizon where the approach is most

reliable is for ±5 and ±10 for image coordinate and for ±5
to ±15 for birds-eye view perspective.
The performance is also affected by the distance of the

object to the vehicle and it appears that the prediction is harder

when the object is closer to the vehicle. The desired precision

and responsiveness will be dictated by the final use of the

prediction, for instance in risk analysis or collision avoidance

systems.

Observing that the size of the data affects significantly the

performance of the LSTM and noting the lack of data for

path prediction, useful future work would be to apply data

augmentation methods to the KITTI dataset and to utilise

transfer learning to fine tune a model trained on a larger

path and motion dataset for the specific application of moving

cameras on vehicles. This work uses positional and observed

paths only and the next step will be to combine external data to

constrain the path predictions based on real world knowledge.

ACKNOWLEDGMENT

This work has received funding from EU H2020 Project

VI-DAS under grant number 690772 and Insight Centre for

Data Analytics funded by SFI, grant number SFI/12/RC/2289.

REFERENCES

[1] L. Fletcher, L. Petersson, A. Zelinsky et al., “Driver assistance systems
based on vision in and out of vehicles,” in Intelligent Vehicles Sympo-
sium, 2003, pp. 9–11.

[2] K. Bengler, K. Dietmayer, B. Farber, M. Maurer, C. Stiller, and
H. Winner, “Three decades of driver assistance systems: Review and
future perspectives,” IEEE Intelligent Transportation Systems Magazine,
vol. 6, no. 4, pp. 6–22, 2014.

[3] P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: An
evaluation of the state of the art,” IEEE transactions on pattern analysis
and machine intelligence, vol. 34, no. 4, pp. 743–761, 2012.

[4] S. Sivaraman and M. M. Trivedi, “Looking at vehicles on the road:
A survey of vision-based vehicle detection, tracking, and behavior
analysis,” IEEE Transactions on Intelligent Transportation Systems,
vol. 14, no. 4, pp. 1773–1795, 2013.

[5] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The KITTI dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231–1237, 2013.

[6] N. Schneider and D. M. Gavrila, “Pedestrian path prediction with
recursive bayesian filters: A comparative study,” in German Conference
on Pattern Recognition. Springer, 2013, pp. 174–183.

[7] K. Okamoto, K. Berntorp, and S. Di Cairano, “Similarity-based vehicle-
motion prediction,” in 2017 American Control Conference (ACC).
IEEE, 2017, pp. 303–308.

[8] R. Madhavan, Z. Kootbally, and C. Schlenoff, “Prediction in dynamic
environments for autonomous on-road driving,” in Control, Automation,
Robotics and Vision, 2006. ICARCV’06. 9th International Conference
on. IEEE, 2006, pp. 1–6.

[9] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Journal of basic Engineering, vol. 82, no. 1, pp. 35–45,
1960.

[10] X.-B. Jin, T.-L. Su, J.-L. Kong, Y.-T. Bai, B.-B. Miao, and C. Dou,
“State-of-the-Art mobile intelligence: Enabling robots to move like
humans by estimating mobility with artificial intelligence,” Applied
Sciences, vol. 8, no. 3, p. 379, 2018.

[11] C. G. Keller and D. M. Gavrila, “Will the pedestrian cross? a study
on pedestrian path prediction,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 15, no. 2, pp. 494–506, 2014.

[12] D. Vasquez and T. Fraichard, “Motion prediction for moving objects: a
statistical approach,” in Proceedings of the IEEE International Confer-
ence on Robotics and Automation (ICRA), vol. 4, 2004, pp. 3931–3936.

[13] B. T. Morris and M. M. Trivedi, “Learning and classification of trajecto-
ries in dynamic scenes: A general framework for live video analysis,” in
Advanced Video and Signal Based Surveillance, 2008. AVSS’08. IEEE
Fifth International Conference on. IEEE, 2008, pp. 154–161.

[14] Y. Yoo, K. Yun, S. Yun, J. Hong, H. Jeong, and J. Young Choi, “Visual
path prediction in complex scenes with crowded moving objects,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 2668–2677.

[15] J. Bian, D. Tian, Y. Tang, and D. Tao, “A survey on trajectory clustering
analysis,” arXiv preprint arXiv:1802.06971, 2018.

[16] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social LSTM: Human trajectory prediction in crowded
spaces,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 961–971.

[17] F. Altché and A. de La Fortelle, “An LSTM network for highway
trajectory prediction,” in 2017 IEEE 20th International Conference on
Intelligent Transportation Systems (ITSC). IEEE, 2017, pp. 353–359.

[18] F. Bartoli, G. Lisanti, L. Ballan, and A. Del Bimbo, “Context-aware
trajectory prediction,” in 2018 24th International Conference on Pattern
Recognition (ICPR). IEEE, 2018, pp. 1941–1946.

[19] B. Kim, C. M. Kang, J. Kim, S. H. Lee, C. C. Chung, and J. W. Choi,
“Probabilistic vehicle trajectory prediction over occupancy grid map via
recurrent neural network,” in 2017 IEEE 20th International Conference
on Intelligent Transportation Systems (ITSC). IEEE, 2017, pp. 399–404.

[20] A. Bhattacharyya, M. Fritz, and B. Schiele, “Long-term on-board
prediction of pedestrians in traffic scenes,” in 1st Conference on Robot
Learning, 2017.

