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ABSTRACT

Generative adversarial networks (GANs) are increasingly attracting attention in
the computer vision, natural language processing, speech synthesis and similar
domains. However, evaluating the performance of GAN:Ss is still an open and chal-
lenging problem. Existing evaluation metrics primarily measure the dissimilarity
between real and generated images using automated statistical methods. They
often require large sample sizes for evaluation and do not directly reflect human
perception of image quality. In this work, we introduce an evaluation metric called
Neuroscore, for evaluating the performance of GANSs, that more directly reflects
psychoperceptual image quality through the utilization of brain signals. Our re-
sults show that Neuroscore has superior performance to the current evaluation
metrics in that: (1) It is more consistent with human judgment; (2) The evalua-
tion process needs much smaller numbers of samples; and (3) It is able to rank
the quality of images on a per GAN basis. A convolutional neural network (CNN)
based neuro-Al interface is proposed to predict Neuroscore from GAN-generated
images directly without the need for neural responses. Importantly, we show that
including neural responses during the training phase of the network can signifi-
cantly improve the prediction capability of the proposed model. Codes and data
can be referred at this link: https://github.com/villawang/Neuro-Al-Interface.

1 INTRODUCTION

There is a growing interest in studying generative adversarial networks (GANs) in the deep learning
community (Goodfellow et al) [2014). Specifically, GANs have been widely applied to various
domains such as computer vision (Karras et al. 2018), natural language processing (Fedus et al.,
2018)), speech synthesis (Donahue et al., [2018)) and time series generation (Brophy et al., [2019).
Compared with other deep generative models (e.g. variational autoencoders (VAEs)), GANs are
favored for effectively handling sharp estimated density functions, efficiently generating desired
samples and eliminating deterministic bias (Wang et al.l 2019c)). Due to these properties GANs
have successfully contributed to plausible image generation (Karras et al., 2018]), image to image
translation (Zhu et al., [2017)), image super-resolution (Ledig et al.l 2017), image completion (Yu
et al.,[2018) etc.

However, three main challenges still exist currently in the research of GANs: (1) Mode collapse - the
model cannot learn the distribution of the full dataset well, which leads to poor generalization ability;
(2) Difficult to train - it is non-trivial for discriminator and generator to achieve Nash equilibrium
during the training; (3) Hard to evaluate - the evaluation of GANs can be considered as an effort to
measure the dissimilarity between real distribution p,. and generated distribution p,. Unfortunately,
the accurate estimation of p, is intractable. Thus, it is challenging to have a good estimation of the
correspondence between p,. and p,. Aspects (1) and (2) are more concerned with computational
aspects where much research has been carried out to mitigate these issues (Li et al.,|2015} [Salimans
et al.l|2016;|Arjovsky et al.,2017). Aspect (3) is similarly fundamental, however, limited literature is
available and most of the current metrics only focus on measuring the dissimilarity between training
and generated images. A more meaningful GANs evaluation metric that is consistent with human
perceptions is paramount in helping researchers to further refine and design better GANSs.

*Work done in the Insight Centre for Data Analytics, Dublin City University.
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Although some evaluation metrics, e.g., Inception Score (IS), Kernel Maximum Mean Discrepancy
(MMD) and Fréchet Inception Distance (FID), have already been proposed (Salimans et al., 2016;
Heusel et al., [2017; [Borji, [2018)), their limitations are obvious: (1) These metrics do not agree with
human perceptual judgments and human rankings of GAN models. A small artifact on images
can have a large effect on the decision made by a machine learning system (Koh & Liang} |2017)),
whilst the intrinsic image content does not change. In this aspect, we consider human perception
to be more robust to adversarial images samples when compared to a machine learning system; (2)
These metrics require large sample sizes for evaluation (Xu et al., 2018 [Salimans et al., [2016).
Large-scale samples for evaluation sometimes are not realistic in real-world applications since it
is time-consuming; and (3) They are not able to rank individual GAN-generated images by their
quality i.e., the metrics are generated on a collection of images rather than on a single image basis.

Yamins et al.| (2014} demonstrates that CNN matched with neural data recorded from inferior tem-
poral cortex (Chelazzi et al.| [1993) has high performance in object recognition tasks. Given the
evidence above that a CNN is able to predict the neural response in the brain and can reflect the
spatio-temporal neural dynamics in the human brain visual processing area (Cichy et al., 2016} [Tu
et al.| 2018} [Kuzovkin et al., [2018)), we describe a neuro-Al interface system, where human being’s
neural response is used as supervised information to help the Al system (CNNs used in this work)
solve challenging problems in the real world. As a starting point for exploiting the idea of neuro-Al
interface, we focus on utilizing it to solve one of the fundamental problems in GANs: designing a
proper evaluation metric.

In this paper, we firstly introduce a brain-produced score (Neuroscore), generated from human be-
ing’s electroencephalography (EEG) signals, in terms of the quality evaluation on GANs. Secondly,
we demonstrate and validate a neural-Al interface (as seen in Fig. [I)), which uses neural responses
as supervised information to train a CNN. The trained CNN model is able to predict Neuroscore (we
call the predicted Neuroscore as synthetic-Neuroscore) for images without corresponding neural re-
sponses. We test this framework via three models: Shallow convolutional neural network, Mobilenet
V2 (Sandler et al.| [2018)) and Inception V3 (Szegedy et al.l [2016). The scope of the Neuro-Al in-
terface should not be limited in DNN and EEG signals. We think spike trains or fMRI should also
be potential source signals that can be used for training Al systems; furthermore, via utilizing more
temporal properties (She et al., [2018; She & Wu, 2019; [Feng et al., |2019; |She et al.| 2019), we
think the features extracted from these time series signals should be more robust and predictive via
learning the temporal structure.

Neuroscore (Wang et al.,[2019al) is calculated via measurement of the P300 (by averaging the single-
trial P300 amplitude), an event-related potential (ERP) (Polich, 2007) present in EEG, via a rapid
serial visual presentation (RSVP) paradigm (Wang et al., |2018; Healy et al., [2020; Wang, 2019;
Wang et al.| |2016; Healy et al., 2017). The unique benefit of Neuroscore is that it more directly
reflects the perceptual judgment of images, which is intuitively more reliable compared to the con-
ventional metrics (Borji, 2018]). Details of Neuroscore can be refered in (Wang et al., 2019a)).

2 METHODOLOGY
2.1 NEURO-AI INTERFACE

Figure [2] demonstrates the schematic of neuro-Al interface used in this work. Flow 1 shows that the
image processed by human being’s brain and produces single trial P300 source signal for each input
image. Flow 2 in Fig. 2]demonstrates a CNN with including EEG signals during training stage. The
convolutional and pooling layers process the image similarly as retina done (McIntosh et al.|[2016).
Fully connected layers (FC) 1-3 aim to emulate the brain’s functionality that produces EEG signal.
Yellow dense layer in the architecture aims to predict the single trial P300 source signal in 400-600
ms response from each image input. In order to help model make a more accurate prediction for the
single trial P300 amplitude for the output, the single trial P300 source signal in 400-600 ms is fed
to the yellow dense layer to learn parameters for the previous layers in the training step. The model
was then trained to predict the single trial P300 source amplitude (red point shown in signal trail
P300 source signal of Fig. 2).

2.2 TRAINING DETAILS

Mobilenet V2, Inception V3 and Shallow network were explored in this work, where in flow 2 we
use these three network bones: such as Conv1-pooling layers. For Mobilenet V2 and Inception V3.
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Figure 1: Schematic of neuro-Al interface. Image stimuli generated by GANs are simultaneously
presented to a CNN and participants. The inference model is initialized by pretrained weights which
has been trained by large scale dataset e.g., CelebA. Participants’ P300 amplitude is fed to the
network as ground truth and EEG responses are extracted and fed to the CNN as supervisory infor-
mation for assisting the CNN predict P300 amplitude.

ingle trial P300 source signal

o) o r{ Output size: 1X 1
A,po,w ,14- FC1 FCc2 o} FC3 O FC4
() Stage2 Gradient descent

] ° ! 1
<= |
r{ Output size: 50X 1 :

|

|

|

'

|

_ _ __ _ _ Losst
Gradient descent

Add windowed single trial P300 source signal

o
Time (ms)

Figure 2: A neuro-Al interface and training details with adding EEG information. Our training
strategy includes two stages: (1) Learning from image to P300 source signal; and (2) Learning from
P300 source signal to P300 amplitude. loss; is the Lo distance between the yellow layer and the
single trial P300 source signal in the 400 - 600 ms corresponding to the single input image. lossy is
the mean square error between model prediction and the single trial P300 amplitude. loss; and losss
will be introduced in section

We used pretrained parameters from up to the FC 1 shown in Fig. 2] We trained parameters from FC
1 to FC 4 for Mobilenet V2 and Inception V3. 01 is used to denote the parameters from FC 1 to FC
3 and 05 indicates the parameters in FC 4. For the Shallow model, we trained all parameters from
scratch.

We defined two stage loss function (loss; for single trial P300 source signal in the 400 - 600 ms time
window and loss, for single trial P300 amplitude) as

loss1(01) = N ZHS”W S’md(@l)llg,
= (1)
10882(01, 92 N Z true __ ;Dred(el’ 92))27

where S!"¢ ¢ R is the single trial P300 signal in the 400 - 600 ms time window to the presented

image, and y; refers to the single trial P300 amplitude to each image.

The training of the models without using EEG is straightforward, models were trained directly
to minimize loss2 (61, 02) by feeding images and the corresponding single trial P300 amplitude.
Training with EEG information is visualized in the “Flow 27 of Fig. 2] with two stages. Stage 1
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learns parameters 01 to predict P300 source signal while stage 2 learns parameters 05 to predict
single trial P300 amplitude with 8, fixed.

3  RESULTS
Table|l|shows the error for each model with EEG signal, with randomized EEG signal within each
Model Error mean(std)
Shallow-EEG 0.209 (+0.102)
Shallow net | Shallow-EEG,andom | 0.348 (£0.114)
Shallow 0.360 (£0.183)

Mobilenet-EEG 0.198 (+£0.087)
Mobilenet | Mobilenet-EEG,angom | 0.404 (£0.162)

Mobilenet 0.366 (£0.261)

Inception-EEG 0.173 (+0.069)

Inception Inception-EEG, andom | 0.392 (£0.057)
Inception 0.344 (£0.149)

Table 1: Errors of 9 models for cross participants (“-EEG” indicates models are trained with paired
EEG, “-EEGandom” refers to EEG trials which are randomized in the loss; within each type of
GAN). Results are averaged by shuffling training/testing sets for 20 times. Error is defined as:

Z;”|Neuroscorez(fr)e , — Neuroscore” |, where m = 3 is the number of GAN category used (DC-

GAN, BEGAN, PROGAN) (Radford et al.l 2015} Berthelot et al.,[2017; Karras et al.,[2017).

type of GAN and without EEG. All models with EEG perform better than models without EEG,
with much smaller errors and variances. Statistic tests between model with EEG and without EEG
are also carried out to verify the significance of including EEG information during the training
phase. One-way ANOVA tests (P-value) for each model with EEG and without EEG are stated as:
Pshatiow = 0.003, Parovitenet = 0.012 and Pryception = 5.980e — 05. Results here demonstrate
that including EEG during the training stage helps all three CNNs improve the performance on
predicting the Neuroscore. The performance of models with EEG is ranked as follows: Inception-
EEG, Mobilenet-EEG, and Shallow-EEG, which indicates that deeper neural networks may achieve
better performance in this task.

Table [2] shows the comparison between synthetic-Neuroscore and three traditional scores. To be
consistent with all the scores (smaller score indicates better GAN), we used 1/IS and 1/synthetic-
Neuroscore for comparisons in Table [2} It can be seen that people rank the GAN performance as
PROGAN > BEGAN > DCGAN. All three synthetic-Neuroscores produced by the three models
with EEG are consistent with human judgment while the other three conventional scores are not
(they all indicate that DCGAN outperforms BEGAN).

Metrics DCGAN | BEGAN | PROGAN
1/1S 0.44 0.57 0.42
MMD 0.22 0.29 0.12
FID 63.29 83.38 34.10
1/Shallow-EEG 1.60 1.39 1.14
Proposed Methods | 1/Mobilenet-EEG 1.71 1.29 1.20
1/Inception-EEG 1.51 1.34 1.24
Human (BE accuracy) 0.995 0.824 0.705

Table 2: Three conventional scores: IS, MMD, FID, and synthetic-Neuroscore produced by three
models with EEG for each GAN category. A lower score indicates better performance of the GAN.
Bold text indicates the consistency with human judgment (BE) accuracy.

4 CONCLUSION

In this paper, we introduce a neuro-Al interface that interacts CNNs with neural signals. We demon-
strate the use of neuro-Al interface by introducing a challenge in the area of GANs i.e., evaluate the
quality of images produced by GANs. Three deep network architectures are explored and the re-
sults demonstrate that including neural responses during the training phase of the neuro-Al interface
improves its accuracy even when neural measurements are absent when evaluating on the test set.
More details of Neuroscore can be found in the recent work (Wang et al.,|2019b).
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