You are here

Enhancing Statistical Machine Translation with Bilingual Terminology in a CAT Environment

Authors: 

Mihael Arcan, Marco Turchi, Sara Tonelli, Paul Buitelaar

Publication Type: 
Refereed Conference Meeting Proceeding
Abstract: 
In this paper, we address the problem of extracting and integrating bilingual terminology into a Statistical Machine Translation (SMT) system for a Computer Aided Translation (CAT) tool scenario. We develop a framework that, taking as input a small amount of parallel in-domain data, gathers domain-specific bilingual terms and injects them in an SMT system to enhance the translation productivity. Therefore, we investigate several strategies to extract and align bilingual terminology, and to embed it into the SMT. We compare two embedding methods that can be easily used at run-time without altering the normal activity of an SMT system: XML markup and the cache-based model. We tested our framework on two different domains showing improvements up to 15% BLEU score points.
Conference Name: 
AMTA-2014
Proceedings: 
11th Biennial Conference of the Association for Machine Translation in the Americas
Digital Object Identifer (DOI): 
10.13140/2.1.1019.8404
Publication Date: 
22/10/2014
Conference Location: 
Canada
Research Group: 
Institution: 
NUIG
Project Acknowledges: 
Open access repository: 
No
Publication document: