You are here

Efficient Intermediate Data Placement in Federated Cloud Data Centers Storage


Sonia Ikken, Eric Renault, Amine Barkat, Tahar Kechadi, abdelkamel Tari

Publication Type: 
The goal of cloud federation strategies is to define a mechanism for resources sharing among federation collaborators. Those mechanisms must be fair to guaranty the common benefits of all the federation members. This paper focuses on intermediate data allocation cost in federated cloud storage. Through a federation mechanism, we propose a mixed integer linear programming model (MILP) to assist multiple data centers hosting intermediate data generated from a scientific community. Under the constraints of the problem, an exact algorithm is proposed to minimize intermediate data allocation cost over the federated data centers storage, taking into account scientific users requirements, intermediate data dependency and data size. Experimental results show the cost-efficiency and scalability of the proposed federated cloud storage model.
Publication Date: 
National University of Ireland, Dublin (UCD)
Open access repository: