You are here

Domain adaptation for ontology localization

Authors: 

John McCrae, Mihael Arcan, Kartik Asooja, Jorge Gracia, Paul Buitelaar, Philipp Cimiano

Publication Type: 
Refereed Original Article
Abstract: 
Ontology localization is the task of adapting an ontology to a different cultural context, and has been identified as an important task in the context of the Multilingual Semantic Web vision. The key task in ontology localization is translating the lexical layer of an ontology, i.e., its labels, into some foreign language. For this task, we hypothesise that the translation quality can be improved by adapting a machine translation system to the domain of the ontology. To this end, we build on the success of existing statistical machine translation (SMT) approaches, and investigate the impact of different domain adaptation techniques on the task. In particular, we investigate three techniques: i) enriching a phrase table by domain-specific translation candidates acquired from existing Web resources, ii) relying on Explicit Semantic Analysis as an additional technique for scoring a certain translation of a given source phrase, as well as iii) adaptation of the language model by means of weighting n-grams with scores obtained from topic modelling. We present in detail the impact of each of these three techniques on the task of translating ontology labels. We show that these techniques have a generally positive effect on the quality of translation of the ontology and that, in combination, they provide a significant improvement in quality.
Digital Object Identifer (DOI): 
10.1016/j.websem.2015.12.001
Publication Status: 
Published
Date Accepted for Publication: 
Wednesday, 30 December, 2015
Publication Date: 
05/01/2016
Journal: 
Web Semantics
Research Group: 
Institution: 
National University of Ireland, Galway (NUIG)
Project Acknowledges: 
Open access repository: 
No