You are here

Principal Component Analysis of the Biomechanical Factors Associated With Performance During Cutting

Authors: 

Neil Welch, Chris Richter, Andy Franklyn-Miller, Kieran Moran

Publication Type: 
Refereed Original Article
Abstract: 
Welch, N, Richter, C, Franklyn-Miller, A, and Moran, K. Principal component analysis of the biomechanical factors associated with performance during cutting. J Strength Cond Res XX(X): 000–000, 2018—The main aim of the current study was to investigate the relationship between kinematic variables in cutting and performance outcome across different angled cuts through the use of principal component analysis and permutation testing. Twenty-five male intercounty Gaelic football players (23.5 ± 4.2 years, 183 ± 6 cm, and 83 ± 6.9 kg) participated in the study. Three-dimensional motion capture was used to perform a biomechanical analysis of 110 and 45° cutting tasks. Principal component analysis and permutation testing revealed one principal component within the 45° cut (r = 0.26) and 2 principal components within the 110° (r = 0.66 and 0.27) cut that consistently correlated with performance outcome. Within the 45° cut, the identified principal component was interpreted as relating to performance cues of maintaining a low center of mass during the concentric phase, using a shorter ground contact time, resisting a reduction in lateral center of mass to ankle and knee distance in the eccentric phase, and using faster and larger extensions of the hip and knee. Within the 110° cut, the first identified principal component was interpreted as relating to performance cues of maintaining a low center of mass during the concentric phase, using a shorter ground contact time, resisting a reduction in lateral center of mass to ankle and knee distance in the eccentric phase, and resisting hip flexion then using hip extension. The second principal component was interpreted as relating to a performance cue of leaning in the direction of the cut.
Digital Object Identifer (DOI): 
10.1519
Publication Status: 
Published
Date Accepted for Publication: 
Thursday, 17 January, 2019
Publication Date: 
17/01/2019
Journal: 
The Journal of Strength & Conditioning Research
Research Group: 
Institution: 
Dublin City University (DCU)
Open access repository: 
Yes