You are here

Predicting Injectable Medication Adherence via a Smart Sharps Bin and Machine Learning

Authors: 

Yingqi Gu, Akshay Zalkikar, Lara Kelly, Kieran Daly, Tomas Ward

Publication Type: 
Refereed Conference Meeting Proceeding
Abstract: 
Medication non-adherence is a widespread problem affecting over 50% of people who have chronic illness and need chronic treatment. Non-adherence exacerbates health risks and drives significant increases in treatment costs. In order to address these challenges, the importance of predicting patients' adherence has been recognised. In other words, it is important to improve the efficiency of interventions of the current healthcare system by prioritizing resources to the patients who are most likely to be non-adherent. Our objective in this work is to make predictions regarding individual patients' behaviour in terms of taking their medication on time during their next scheduled medication opportunity. We do this by leveraging a number of machine learning models. In particular, we demonstrate the use of a connected IoT device; a "Smart Sharps Bin", invented by HealthBeacon Ltd.; to monitor and track injection disposal of patients in their home environment. Using extensive data collected from these devices, five machine learning models, namely Extra Trees Classifier, Random Forest, XGBoost, Gradient Boosting and Multilayer Perception were trained and evaluated on a large dataset comprising 165,223 historic injection disposal records collected from 5,915 HealthBeacon units over the course of 3 years. The testing work was conducted on real-time data generated by the smart device over a time period after the model training was complete, i.e. true future data. The proposed machine learning approach demonstrated very good predictive performance exhibiting an Area Under the Receiver Operating Characteristic Curve (ROC AUC) of 0.86.
Conference Name: 
IEEE IoT World Forum
Proceedings: 
https://wfiot2020.iot.ieee.org/
Digital Object Identifer (DOI): 
10.NA
Publication Date: 
09/04/2020
Conference Location: 
United States of America
Institution: 
Dublin City University (DCU)
Open access repository: 
Yes
Publication document: